研究生: |
林大鈞 Lin, Da-Jun |
---|---|
論文名稱: |
改善生物可降解性鎂合金AZ61生物相容性及抗腐蝕能力之研究 The effect of surface treatment on the biocompatibility and corrosion resistance of biodegradable AZ61 magnesium alloy |
指導教授: |
葉明龍
Yeh, Ming-Long |
共同指導教授: |
李澤民
Lee, Tzer-Min |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 鎂合金 、生物可降解 、水熱法 、T-BAG 、抗腐蝕 、生物相容性 |
外文關鍵詞: | magnesium alloy, biodegradable, hydrothermal treatment, T-BAG, anti-corrosion, biocompatibility |
相關次數: | 點閱:151 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎂合金因具有良好力學特性及生物可降解性,降解成分可刺激骨細胞活性,適合應用在人工植體上,有機會取代目前臨床使用之不銹鋼與鈦合金,被視為第三代生醫材料。但生醫鎂合金由於抗腐蝕性差,動物實驗顯示鎂合金本身降解速率過快,導致植體表面析氫速度太高與增加周圍溶液 pH值,引起身體異常反應。鎂合金另一個問題是表面改質不易,很難利用現有表面改質方式獲得良好抗蝕並具有生物親和性表面。
本研究使用高溫反應器進行水熱處理,使試片表面生成均質與緻密之氧化物保護膜,提高試片基材抗腐蝕能力。而新式T-BAG 製程可有效的接枝上單分子膜,藉由單分子膜技術改變官能基,利用表面官能基獲得不同的性質,因此本研究融合此二種表面處理技術,並各別探討經表面處理後的鎂合金抗蝕性及生物相容性的變化。首先利用水熱處理方式在生醫用鎂合金表面生成氫氧化鎂保護膜,提供基材具有抗腐蝕能力,接續利用 T-BAG 法進行改質,獲得疏水性的保護,在模擬體液下進行電化學試驗及浸泡試驗結果中,各項耐蝕性的指標皆有隨處理步驟有順序性明顯上升,證明水熱複合單分子塗層的表面可以改善鎂合金之抗腐蝕性。在生物親和性測試中,以細胞毒性、細胞形態、細胞增生能力及蛋白質吸附量進行評估,各組別皆無明顯細胞毒性,其他項目皆有明顯改善的效果。經過表面處理後細胞貼附能力及增生效果大大提高,最後由蛋白質吸附實驗證實材料表面因官能基及疏水性的影響,提高蛋白質吸附能力並提供骨細胞更良好的生長環境。由上述結果,本研究所研究之鎂合金表面處理技術可有效應用於可降解性骨科植體。
Magnesium (Mg) and its alloys are new biomaterials which have been studied recently for hard-tissue replacement. The advantages of magnesium alloy compared to other metal traditionally used in implant, such as stainless and titanium alloy. Magnesium alloy have good mechanical properties and biodegradable. In addition, magnesium is an essential component in human metabolism, and magnesium is known to play an important role in the bone formation. However, owing to high electrochemical corrosion, the poor corrosion resistance of magnesium alloy hinders their use in clinical application. Thus, surface treatment is indispensable to improve their corrosion resistance and biocompatibility. Compared to Ca/P deposition and anodic treatment, hydrothermal treatment could form a uniform, adhesive and protective oxide film on the surface of magnesium. The oxide film could protect magnesium alloys from the aggressive attack in human body. By T-BAG method, the hydrothermal oxide film can be modified with hydrophobic monolayers. The designed tail groups and molecules can be selected to form T-BAG for specific applications, such as corrosion resistance and biocompatibility.
In this investigation, attempt will be devoted to apply hydrothermal treatment to grow protective oxide films of magnesium alloy. After hydrothermal treatment, biocompatibility and protective hydrophobicity could be achieved by grafted functional groups on oxide film by T-BAG method.
The electrochemical and immersion test(in R-SBF) results indicated that anti-corrosion behavior can be enhanced by hydrophobic tail groups (-CH3) on hydrothermal coating surface of plate-like architecture. All the results suggest that the hydrothermal / T-BAG coating can effectively protect the magnesium alloy.
And the biocompatibility of magnesium alloy and coatings was studied by using human osteoblast-like MG-63 cells. It was found that the MG-63 cells could grow well on the surface of hydrothermal/T-BAG coated AZ61 and the evidently cell proliferation rate were provoked by protein adsorption in culture medium. It was concluded that the hydrothermal/T-BAG coated magnesium alloy had good biocompatibility.
[1] Lugowski SJ, Smith DC, McHugh AD, Van Loon JC. Release of metal ions from dental implant materials in vivo: determination of Al, Co, Cr, Mo, Ni, V, and Ti in organ tissue. J Biomed Mater Res 1991;25:1443-58.
[2] Kennady MC, Tucker MR, Lester GE, Buckley MJ. Stress shielding effect of rigid internal fixation plates on mandibular bone grafts. A photon absorption densitometry and quantitative computerized tomographic evaluation. Int J Oral Maxillofac Surg 1989;18:307-10.
[3] Hench LL. Biomaterials: a forecast for the future. Biomaterials 1998;19:1419-23.
[4] Bacakova L, Filova E, Rypacek F, Svorcik V, Stary V. Cell adhesion on artificial materials for tissue engineering. Physiol Res 2004;53 Suppl 1:S35-45.
[5] Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295:1014-7.
[6] Kojima Y. Platform science and technology for advanced magnesium alloys. Magnesium Alloys 2000 2000;350-3:3-17.
[7] Musso CG. Magnesium metabolism in health and disease. International Urology and Nephrology 2009;41:357-62.
[8] Nishimuta M, Kodama N, Morikuni E, Yoshioka YH, Yamada H, Kitajima H, Balance of magnesium positively correlates with that of calcium. Journal of the American College of Nutrition 2004;23:768s-70s.
[9] Hartzell HC, White RE. Effects of Magnesium on Inactivation of the Voltage-Gated Calcium Current in Cardiac Myocytes. Journal of General Physiology 1989;94:745-67.
[10] Wolf FI, Cittadini A. Chemistry and biochemistry of magnesium. Mol Aspects Med 2003;24:3-9.
[11] Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG. Magnesium deficiency: Effect on bone and mineral metabolism in the mouse. Calcified Tissue International 2003;72:32-41.
[12] Song GL. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science 2007;49:1696-701.
[13] Vormann J. Magnesium: nutrition and metabolism. Mol Aspects Med 2003;24:27-37.
[14] Pietak A, Mahoney P, Dias GJ, Staiger MP. Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci Mater Med 2008;19:407-15.
[15] Zreiqat H, Markovic B, Walsh WR, Howlett CR. A novel technique for quantitative detection of mRNA expression in human bone derived cells cultured on biomaterials. J Biomed Mater Res 1996;33:217-23.
[16] Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 2002;62:99-105.
[17] Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002;62:175-84.
[18] Song GL, Song SZ. A possible biodegradable magnesium implant material. Advanced Engineering Materials 2007;9:298-302.
[19] Y. S. Hong KY, G. D. Zhang, J. J. Huang, Y. Q. Hao and H. J. Ai. The role of bone induction of biodegradable magnesium alloy. Acta Metallurgica Sinica 2008;44:1035-41.
[20] M. Erinc WSaRM. Applicability of existing magnesium alloys as biomedical implant materials. Magnesium Technology2009.
[21] Gu XN, Zheng YF, Cheng Y, Zhong SP, Xi TF. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009;30:484-98.
[22] Fatemi-Varzaneh SM, Zarei-Hanzaki A, Haghshenas M. The room temperature mechanical properties of hot-rolled AZ31 magnesium alloy. Journal of Alloys and Compounds 2009;475:126-30.
[23] Zberg B, Uggowitzer PJ, Loffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials 2009;8:887-91.
[24] Li LC, Gao JC, Wang Y. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surface & Coatings Technology 2004;185:92-8.
[25] Zhang XP, Zhao ZP, Wu FM, Wang YL, Wu J. Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank's solution. Journal of Materials Science 2007;42:8523-8.
[26] Hiromoto S, Tomozawa M. Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaCl solution. Surface & Coatings Technology 2011;205:4711-9.
[27] Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials Letters 2008;62:3276-9.
[28] Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010;31:2084-96.
[29] Uan JY, Lin JK, Sun YS, Yang WE, Chen LK, Huang HH. Surface coatings for improving the corrosion resistance and cell adhesion of AZ91D magnesium alloy through environmentally clean methods. Thin Solid Films 2010;518:7563-7.
[30] Wan YZ, Xiong GY, Luo HL, He F, Huang Y, Wang YL. Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium-calcium alloys. Appl Surf Sci 2008;254:5514-6.
[31] Xin YC, Liu CL, Zhang WJ, Huo KF, Tang GY, Tian XB, Corrosion resistance of ZrO2-Zr-coated biodegradable surgical magnesium alloy. Journal of Materials Research 2008;23:312-9.
[32] Wen ZH, Wu CJ, Dai CS, Yang FX. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid. Journal of Alloys and Compounds 2009;488:392-9.
[33] Zhu YY, Wu GM, Zhang YH, Zhao Q. Growth and characterization of Mg(OH)(2) film on magnesium alloy AZ31. Appl Surf Sci 2011;257:6129-37.
[34] Schwartz Z, Boyan BD. Underlying Mechanisms at the Bone-Biomaterial Interface. Journal of Cellular Biochemistry 1994;56:340-7.
[35] Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007;28:3074-82.
[36] Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials 2007;6:997-1003.
[37] Jr. GLGa. “Insoluble Monolayers at Liquid-Gas Interface”. New York: Wiley press; 1966.
[38] Larkins GL, Thompson ED, Ortiz E, Burkhart CW, Lando JB. Langmuir-Blodgett Films as Barrier Layers in Josephson Tunnel-Junctions. Thin Solid Films 1983;99:277-82.
[39] Langmuir I. THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. II. LIQUIDS. J Am Chem Soc 1917;39:1848–906.
[40] Harnack O, Raible I, Yasuda A, Vossmeyer T. Lithographic patterning of nanoparticle films self-assembled from organic solutions by using a water-soluble mask. Applied Physics Letters 2005;86.
[41] Senaratne W, Andruzzi L, Ober CK. Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives. Biomacromolecules 2005;6:2427-48.
[42] Nuzzo RG, Allara DL. Adsorption of Bifunctional Organic Disulfides on Gold Surfaces. J Am Chem Soc 1983;105:4481-3.
[43] Toworfe GK, Bhattacharyya S, Composto RJ, Adams CS, Shapiro IM, Ducheyne P. Effect of functional end groups of silane self-assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function. J Tissue Eng Regen Med 2009;3:26-36.
[44] Haller I. Covalently Attached Organic Monolayers on Semiconductor Surfaces. J Am Chem Soc 1978;100:8050-5.
[45] Sellers H, Ulman A, Shnidman Y, Eilers JE. Structure and Binding of Alkanethiolates on Gold and Silver Surfaces - Implications for Self-Assembled Monolayers. J Am Chem Soc 1993;115:9389-401.
[46] Karpovich DS, Blanchard GJ. Direct Measurement of the Adsorption-Kinetics of Alkanethiolate Self-Assembled Monolayers on a Microcrystalline Gold Surface. Langmuir 1994;10:3315-22.
[47] Walker AV, Tighe TB, Cabarcos OM, Reinard MD, Haynie BC, Uppili S, The dynamics of noble metal atom penetration through methoxy-terminated alkanethiolate monolayers. J Am Chem Soc 2004;126:3954-63.
[48] Laibinis PE, Whitesides GM. Self-Assembled Monolayers of N-Alkanethiolates on Copper Are Barrier Films That Protect the Metal against Oxidation by Air. J Am Chem Soc 1992;114:9022-8.
[49] Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 2006;27:631-42.
[50] Singh RP, Way JD, Dec SF. Silane modified inorganic membranes: Effects of silane surface structure. Journal of Membrane Science 2005;259:34-46.
[51] Hanson EL, Schwartz J, Nickel B, Koch N, Danisman MF. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J Am Chem Soc 2003;125:16074-80.
[52] Neves BRA, Salmon ME, Russell PE, Troughton EB. Thermal stability study of self-assembled monolayers on mica. Langmuir 2000;16:2409-12.
[53] Pourbaix M. Atlas d'Equilibres Electrochimiques. Paris1963. p. 139.
[54] Yu JC, Xu AW, Zhang LZ, Song RQ, Wu L. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. Journal of Physical Chemistry B 2004;108:64-70.
[55] Yan CL, Xue DF, Zou LJ, Yan XX, Wang W. Preparation of magnesium hydroxide nanoflowers. Journal of Crystal Growth 2005;282:448-54.
[56] Chen JM, Lin L, Song YH, Shao L. Influence of KOH on the hydrothermal modification of Mg(OH)2 crystals. Journal of Crystal Growth 2009;311:2405-8.
[57] Xiang L, Jin YC, Jin Y. Hydrothermal formation of dispersive Mg(OH)(2) particles in NaOH solution. Transactions of Nonferrous Metals Society of China 2004;14:370-5.
[58] Marcinko S, Fadeev AY. Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir 2004;20:2270-3.
[59] Pechy P, Rotzinger FP, Nazeeruddin MK, Kohle O, Zakeeruddin SM, Humphrybaker R, Preparation of Phosphonated Polypyridyl Ligands to Anchor Transition-Metal Complexes on Oxide Surfaces - Application for the Conversion of Light to Electricity with Nanocrystalline Tio2 Films (Pg 65, 1995). Journal of the Chemical Society-Chemical Communications 1995:1093-.
[60] Li JG, Ikegami T, Lee JH, Mori T, Yajima Y. Synthesis of Mg-Al spinel powder via precipitation using ammonium bicarbonate as the precipitant. Journal of the European Ceramic Society 2001;21:139-48.
[61] 陳欣蘋. 顯微組織對壓鑄AZ91D鎂合金之腐蝕行為影響研究: NCKU; 2002.
[62] Sun TL, Wang GJ, Feng L, Liu BQ, Ma YM, Jiang L, Reversible switching between superhydrophilicity and superhydrophobicity. Angewandte Chemie-International Edition 2004;43:357-60.
[63] Ishizaki T, Hieda J, Saito N, Saito N, Takai O. Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition. Electrochimica Acta 2010;55:7094-101.
[64] Ishizaki T, Teshima K, Masuda Y, Sakamoto M. Liquid phase formation of alkyl- and perfluoro-phosphonic acid derived monolayers on magnesium alloy AZ31 and their chemical properties. Journal of Colloid and Interface Science 2011;360:280-8.
[65] Liu M, Zanna S, Ardelean H, Frateur I, Schmutz P, Song GL, A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg-Al intermetallics: Al3Mg2 and Mg17Al12. Corrosion Science 2009;51:1115-27.
[66] 陳國寧. 利用有機-無機混成法製備金屬防蝕薄膜之研究: 國立中央大學; 2005.
[67] Zhang DQ, He XM, Cai QR, Gao LX, Kim GS. Arginine self-assembled monolayers against copper corrosion and synergistic effect of iodide ion. Journal of Applied Electrochemistry 2009;39:1193-8.
[68] Wang J, Li DD, Liu Q, Yin X, Zhang Y, Jing XY, Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance. Electrochimica Acta 2010;55:6897-906.
[69] Yang L, Zhang EL. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2009;29:1691-6.
[70] Mordike BL, Ebert T. Magnesium - Properties - applications - potential. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2001;302:37-45.
[71] Lin JK, Uan JY, Wu CP, Huang HH. Direct growth of oriented Mg-Fe layered double hydroxide (LDH) on pure Mg substrates and in vitro corrosion and cell adhesion testing of LDH-coated Mg samples. J Mater Chem 2011;21:5011-20.
[72] Bush KA, Driscoll PF, Soto ER, Lambert CR, McGimpsey WG, Pins GD. Designing tailored biomaterial surfaces to direct keratinocyte morphology, attachment, and differentiation. J Biomed Mater Res A 2009;90A:999-1009.
[73] Xu LC, Siedlecki CA. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 2007;28:3273-83.
[74] Sigal GB, Mrksich M, Whitesides GM. Effect of surface wettability on the adsorption of proteins and detergents. J Am Chem Soc 1998;120:3464-73.
[75] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27:2907-15.