簡易檢索 / 詳目顯示

研究生: 陳韻如
Chen, Yun-Ru
論文名稱: MicroRNA-320調控口腔癌細胞的移行
MicroRNA-320 Modulates Oral Cancer Cell Migration
指導教授: 陳玉玲
Chen, Yuh-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: miR-320細胞移行SRF檳榔子萃取液低氧
外文關鍵詞: miR-320, cell migration, SRF, areca nut extract, hypoxia
相關次數: 點閱:145下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口腔鱗狀細胞癌 (oral squamous cell carcinoma, OSCC) 是全球常見的癌症之一。癌轉移是造成癌症病患死亡最主要的原因,但現今對於轉移的機制仍未清楚。MicroRNAs (miRNAs) 是一小片段不進行轉錄的ribonucleic acid (RNA),會負調控其目標基因並參與大部分的生物功能,但至今尚未清楚miRNAs在口腔癌轉移中扮演的角色。而我們初步的結果發現在OSCC中microRNA-320 (miR-320) 的表現量明顯下降,且與檳榔嚼食呈現負相關。miR-320的預測轉錄起始點座落於容易甲基化的CpG島,顯示miR-320的轉錄可能受到表觀修飾機制之調控。我們發現檳榔子萃取液會抑制人類口腔癌細胞human squamous cell carcinoma 3 (HSC3) 的miR-320,然而表觀修飾藥物 (epigenetic modifier drug),5-aza-2'-deoxycytidine,無法促進miR-320表現,這表示deoxyribonucleic acid (DNA) 甲基化可能不調控miR-320的轉錄。此外,實驗室先前發現內皮細胞處於低氧及營養缺乏環境會影響miR-320表現,而本篇論文發現HSC3細胞處於低氧環境下也會抑制miR-320。由於過量表現miR-320會抑制口腔癌細胞的移行,因此我們利用complementary DNA (cDNA) 微陣列 (microarray) 技術找出兩個表現量下降並可能受miR-320調控的移行相關基因,分別是serum response factor (SRF) 與caveolin-1 (CAV1) 基因。實驗結果顯示miR-320會直接結合到SRF與CAV1的3端非轉譯區 (3’ untranslated region, 3’UTR) 並抑制基因的轉譯,並發現以RNA干擾技術降低SRF表現會明顯抑制OSCC細胞的移行,然而抑制CAV1表現對OSCC細胞移行的影響不一致。以上結果顯示miR-320藉由負調控SRF進而抑制口腔癌細胞的移行。我們的研究探討miRNAs影響口腔癌轉移的機制並提供標靶治療的新目標。

    Oral squamous cell carcinoma (OSCC) is a common neoplasm worldwide. Metastasis is the most important contributing factor to oral cancer mortality; however, the mechanism of metastasis remained unclear. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) of ~22 nucleotides and negatively regulate their targets to play important role in a wide range of biological functions. The role of miRNAs in mediating oral cancer metastasis still remained largely unexplored. Our preliminary results indicated that the expression of microRNA-320 (miR-320) is significantly downregulated in OSCC and negatively correlated with betel nut chewing. A predicted miR-320 transcription start site is found to be located in a CpG island which has a high probability of deoxyribonucleic acid (DNA) methylation implied that the transcription of miR-320 might regulate by an epigenetic mechanism. In this study, we found that miR-320 does be down-regulated by an areca nut extract in human squamous cell carcinoma 3 (HSC3) OSCC cells. However, the epigenetic modifier drug, 5-aza-2'-deoxycytidine, did not reactivate miR-320 expression showing that DNA methylation might not involved in its transcriptional control. Besides, in our previous finding that hypoxia and nutrients deprivation contributed to the expression of miR-320 in endothelial cells. In this study, we found that miR-320 is also down-regulated in HSC3 cell in response to hypoxia. Furthermore, overexpression of miR-320 in oral cancer cells inhibited cell migration. Hence, we analyzed the migration-related genes regulated by miR-320 using complementary DNA (cDNA) microarray analyses, and found two particular genes, serum response factor (SRF) and caveolin-1 (CAV1), were down-regulated and might be miR-320 target genes. Our results showed that miR-320 directly targeted the 3’ untranslated region (3’UTR) of SRF and CAV1 and decreased their translational levels. By RNA interference approaches, we found that knockdown of SRF obviously reduced OSCC cell migration, but the effect of CAV1 silenced in cell migration is controversial. The results suggested that miR-320 inhibited oral cancer cell migration might via targeting and negatively regulating SRF. Our study explores how miRNAs influences oral cancer metastasis and provides new candidates for therapeutic targets.

    中文摘要 I 英文摘要 III 致謝 V 目錄 VII 表目錄 IX 圖目錄 X 附錄目錄 XI 英文縮寫檢索表 XII 緒論 1 MicroRNAs 1 miRNAs生合成 3 miRNAs調控訊息RNA之機制 4 Caveolin-1 (CAV1) 6 Serum Response Factor (SRF) 8 研究動機 10 材料與方法 11 一、 細胞株及細胞培養 11 二、 5-Aza-2'-deoxycytidine處理細胞 11 三、 以檳榔子萃取液 (Areca Nut Extract, ANE)、檳榔嚼塊萃取液 (Betel Quid Extract, BQE) 處理細胞 11 四、 轉染 (Transfection) 12 五、 病毒感染 12 六、 萃取RNA 13 七、 反轉錄 (Reverse Transcription, RT) 13 八、 即時定量Polymerase Chain Reaction (Real-time PCR) 14 九、 聚合酶連鎖反應 (PCR) 15 十、 西方墨點法 (Western Blot) 16 十一、 3端非轉譯區報導基因質體構築與複製 17 十二、 螢光素酶報導測定 (Luciferase Reporter Assay) 18 十三、 移行測定 (Migration Assay) 19 十四、 統計分析 19 實驗結果 20 一、 miR-320可能不會受到DNA甲基化的調控。 20 二、 檳榔子萃取液會抑制HSC3細胞中miR-320的表現。 20 三、 低氧環境對OSCC細胞表現miR-320的影響。 22 四、 OC2、HSC3及SCC15細胞過量表現miR-320會明顯影響組織重組及傷口癒合相關的訊息傳遞路徑。 22 五、 miR-320結合至SRF與CAV1的3端非轉譯區進行負調控 23 六、 在口腔癌細胞株中抑制CAV1、SRF對移行的影響。 24 討論 26 結論 31 參考資料 32

    Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., and Pasquinelli, A.E. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553-563.
    Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.
    Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol 3, e85.
    Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101, 2999-3004.
    Cassavaugh, J., and Lounsbury, K.M. (2011). Hypoxia-mediated biological control. J Cell Biochem 112, 735-744.
    Chai, J., and Tarnawski, A.S. (2002). Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing. J Physiol Pharmacol 53, 147-157.
    Chan, Y.C., Khanna, S., Roy, S., and Sen, C.K. (2011). miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 286, 2047-2056.
    Chang, K.W., Liu, C.J., Chu, T.H., Cheng, H.W., Hung, P.S., Hu, W.Y., and Lin, S.C. (2008). Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma. J Dent Res 87, 1063-1068.
    Chendrimada, T.P., Finn, K.J., Ji, X., Baillat, D., Gregory, R.I., Liebhaber, S.A., Pasquinelli, A.E., and Shiekhattar, R. (2007). MicroRNA silencing through RISC recruitment of eIF6. Nature 447, 823-828.
    Choi, H.N., Kim, K.R., Lee, J.H., Park, H.S., Jang, K.Y., Chung, M.J., Hwang, S.E., Yu, H.C., and Moon, W.S. (2009). Serum response factor enhances liver metastasis of colorectal carcinoma via alteration of the E-cadherin/beta-catenin complex. Oncol Rep 21, 57-63.
    Crosby, M.E., Kulshreshtha, R., Ivan, M., and Glazer, P.M. (2009). MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69, 1221-1229.
    Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F., and Hannon, G.J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235.
    Duan, H., Jiang, Y., Zhang, H., and Wu, Y. (2010). MiR-320 and miR-494 affect cell cycles of primary murine bronchial epithelial cells exposed to benzo[a]pyrene. Toxicol In Vitro 24, 928-935.
    Engelman, J.A., Zhang, X.L., Galbiati, F., and Lisanti, M.P. (1998). Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett 429, 330-336.
    Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43-54.
    Esquela-Kerscher, A., and Slack, F.J. (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6, 259-269.
    Finger, E.C., and Giaccia, A.J. (2010). Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29, 285-293.
    Fong, A., Garcia, E., Gwynn, L., Lisanti, M.P., Fazzari, M.J., and Li, M. (2003). Expression of caveolin-1 and caveolin-2 in urothelial carcinoma of the urinary bladder correlates with tumor grade and squamous differentiation. Am J Clin Pathol 120, 93-100.
    Gao, W., Shen, H., Liu, L., Xu, J., and Shu, Y. (2011). MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 137, 557-566.
    Gineitis, D., and Treisman, R. (2001). Differential usage of signal transduction pathways defines two types of serum response factor target gene. J Biol Chem 276, 24531-24539.
    Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75-79.
    Goetz, J.G., Joshi, B., Lajoie, P., Strugnell, S.S., Scudamore, T., Kojic, L.D., and Nabi, I.R. (2008a). Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol 180, 1261-1275.
    Goetz, J.G., Lajoie, P., Wiseman, S.M., and Nabi, I.R. (2008b). Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev 27, 715-735.
    Graff, J., Kim, D., Dobbin, M.M., and Tsai, L.H. (2011). Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 91, 603-649.
    Gregory, P.A., Bert, A.G., Paterson, E.L., Barry, S.C., Tsykin, A., Farshid, G., Vadas, M.A., Khew-Goodall, Y., and Goodall, G.J. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10, 593-601.
    Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240.
    Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27, 91-105.
    Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A., Ruvkun, G., and Mello, C.C. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23-34.
    Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., and Zamore, P.D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834-838.
    Jiang, L., Liu, X., Kolokythas, A., Yu, J., Wang, A., Heidbreder, C.E., Shi, F., and Zhou, X. (2010). Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer 127, 505-512.
    Jin, Y., Lee, S.J., Minshall, R.D., and Choi, A.M. (2011). Caveolin-1: a critical regulator of lung injury. Am J Physiol Lung Cell Mol Physiol 300, L151-160.
    Kai, Z.S., and Pasquinelli, A.E. (2010). MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol 17, 5-10.
    Ketting, R.F., Fischer, S.E., Bernstein, E., Sijen, T., Hannon, G.J., and Plasterk, R.H. (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15, 2654-2659.
    Khvorova, A., Reynolds, A., and Jayasena, S.D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209-216.
    Kiriakidou, M., Tan, G.S., Lamprinaki, S., De Planell-Saguer, M., Nelson, P.T., and Mourelatos, Z. (2007). An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141-1151.
    Kloosterman, W.P., and Plasterk, R.H. (2006). The diverse functions of microRNAs in animal development and disease. Dev Cell 11, 441-450.
    Koleske, A.J., Baltimore, D., and Lisanti, M.P. (1995). Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci U S A 92, 1381-1385.
    Kozaki, K., Imoto, I., Mogi, S., Omura, K., and Inazawa, J. (2008). Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68, 2094-2105.
    Krol, J., Loedige, I., and Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11, 597-610.
    Kuo, P.L., Hsu, Y.L., Huang, M.S., Chiang, S.L., and Ko, Y.C. (2011). Bronchial epithelium-derived IL-8 and RANTES increased bronchial smooth muscle cell migration and proliferation by Kruppel-like factor 5 in areca nut-mediated airway remodeling. Toxicol Sci 121, 177-190.
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294, 853-858.
    Lahtz, C., and Pfeifer, G.P. (2011). Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol 3, 51-58.
    Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-862.
    Lee, K.H., Lotterman, C., Karikari, C., Omura, N., Feldmann, G., Habbe, N., Goggins, M.G., Mendell, J.T., and Maitra, A. (2009). Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9, 293-301.
    Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.
    Lee, S.W., Reimer, C.L., Oh, P., Campbell, D.B., and Schnitzer, J.E. (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16, 1391-1397.
    Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.
    Lin, P.C., Chang, W.H., Chen, Y.H., Lee, C.C., Lin, Y.H., and Chang, J.G. (2011). Cytotoxic effects produced by arecoline correlated to epigenetic regulation in human K-562 cells. J Toxicol Environ Health A 74, 737-745.
    Liu, X., Jiang, L., Wang, A., Yu, J., Shi, F., and Zhou, X. (2009). MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett 286, 217-222.
    Lu, H.H., Kao, S.Y., Liu, T.Y., Liu, S.T., Huang, W.P., Chang, K.W., and Lin, S.C. (2010). Areca nut extract induced oxidative stress and upregulated hypoxia inducing factor leading to autophagy in oral cancer cells. Autophagy 6, 725-737.
    Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834-838.
    Lu, X., and Kang, Y. (2010). Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16, 5928-5935.
    Ma, L., Teruya-Feldstein, J., and Weinberg, R.A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682-688.
    Mercier, I., Jasmin, J.F., Pavlides, S., Minetti, C., Flomenberg, N., Pestell, R.G., Frank, P.G., Sotgia, F., and Lisanti, M.P. (2009). Clinical and translational implications of the caveolin gene family: lessons from mouse models and human genetic disorders. Lab Invest 89, 614-623.
    Miano, J.M., Long, X., and Fujiwara, K. (2007). Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 292, C70-81.
    Modak, C., and Chai, J. (2010). Serum response factor: look into the gut. World J Gastroenterol 16, 2195-2201.
    Navarro, A., Anand-Apte, B., and Parat, M.O. (2004). A role for caveolae in cell migration. FASEB J 18, 1801-1811.
    Nilsen, T.W. (2007). Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23, 243-249.
    Niu, Z., Li, A., Zhang, S.X., and Schwartz, R.J. (2007). Serum response factor micromanaging cardiogenesis. Curr Opin Cell Biol 19, 618-627.
    Palade, G.E. (1953). Fine structure of blood capillaries. Journal of Applied Physiology 24, 1424.
    Park, M.Y., Kim, K.R., Park, H.S., Park, B.H., Choi, H.N., Jang, K.Y., Chung, M.J., Kang, M.J., Lee, D.G., and Moon, W.S. (2007). Expression of the serum response factor in hepatocellular carcinoma: implications for epithelial-mesenchymal transition. Int J Oncol 31, 1309-1315.
    Parton, R.G., and Simons, K. (2007). The multiple faces of caveolae. Nat Rev Mol Cell Biol 8, 185-194.
    Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B., Muller, P., et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89.
    Petersen, C.P., Bordeleau, M.E., Pelletier, J., and Sharp, P.A. (2006). Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21, 533-542.
    Pocock, R. (2011). Invited review: decoding the microRNA response to hypoxia. Pflugers Arch 461, 307-315.
    Rajjayabun, P.H., Garg, S., Durkan, G.C., Charlton, R., Robinson, M.C., and Mellon, J.K. (2001). Caveolin-1 expression is associated with high-grade bladder cancer. Urology 58, 811-814.
    Razani, B., Combs, T.P., Wang, X.B., Frank, P.G., Park, D.S., Russell, R.G., Li, M., Tang, B., Jelicks, L.A., Scherer, P.E., et al. (2002). Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 277, 8635-8647.
    Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906.
    Schaar, D.G., Medina, D.J., Moore, D.F., Strair, R.K., and Ting, Y. (2009). miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation. Exp Hematol 37, 245-255.
    Scherer, P.E., Okamoto, T., Chun, M., Nishimoto, I., Lodish, H.F., and Lisanti, M.P. (1996). Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci U S A 93, 131-135.
    Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208.
    Shatz, M., Lustig, G., Reich, R., and Liscovitch, M. (2010). Caveolin-1 mutants P132L and Y14F are dominant negative regulators of invasion, migration and aggregation in H1299 lung cancer cells. Exp Cell Res 316, 1748-1762.
    Soulez, M., Rouviere, C.G., Chafey, P., Hentzen, D., Vandromme, M., Lautredou, N., Lamb, N., Kahn, A., and Tuil, D. (1996). Growth and differentiation of C2 myogenic cells are dependent on serum response factor. Mol Cell Biol 16, 6065-6074.
    Sun, Q., Chen, G., Streb, J.W., Long, X., Yang, Y., Stoeckert, C.J., Jr., and Miano, J.M. (2006). Defining the mammalian CArGome. Genome Res 16, 197-207.
    Sun, W., Julie Li, Y.S., Huang, H.D., Shyy, J.Y., and Chien, S. (2010). microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng 12, 1-27.
    Takaguri, A., Shirai, H., Kimura, K., Hinoki, A., Eguchi, K., Carlile-Klusacek, M., Yang, B., Rizzo, V., and Eguchi, S. (2011). Caveolin-1 negatively regulates a metalloprotease-dependent epidermal growth factor receptor transactivation by angiotensin II. J Mol Cell Cardiol 50, 545-551.
    Tang, Z., Scherer, P.E., Okamoto, T., Song, K., Chu, C., Kohtz, D.S., Nishimoto, I., Lodish, H.F., and Lisanti, M.P. (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271, 2255-2261.
    Tavazoie, S.F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P.D., Gerald, W.L., and Massague, J. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147-152.
    Trimmer, C., Whitaker-Menezes, D., Bonuccelli, G., Milliman, J.N., Daumer, K.M., Aplin, A.E., Pestell, R.G., Sotgia, F., Lisanti, M.P., and Capozza, F. (2010). CAV1 inhibits metastatic potential in melanomas through suppression of the integrin/Src/FAK signaling pathway. Cancer Res 70, 7489-7499.
    Trivedy, C.R., Craig, G., and Warnakulasuriya, S. (2002). The oral health consequences of chewing areca nut. Addict Biol 7, 115-125.
    Tsai, Y.S., Lin, C.S., Chiang, S.L., Lee, C.H., Lee, K.W., and Ko, Y.C. (2011). Areca nut induces miR-23a and inhibits repair of DNA double-strand breaks by targeting FANCG. Toxicol Sci.
    Tseng, Y.H., Chang, K.W., Yang, C.C., Liu, C.J., Kao, S.Y., Liu, T.Y., and Lin, S.C. (2011). Association between areca-stimulated vimentin expression and the progression of head and neck cancers. Head Neck.
    Watson, J.A., Watson, C.J., McCann, A., and Baugh, J. (2010). Epigenetics, the epicenter of the hypoxic response. Epigenetics 5, 293-296.
    Williams, T.M., Hassan, G.S., Li, J., Cohen, A.W., Medina, F., Frank, P.G., Pestell, R.G., Di Vizio, D., Loda, M., and Lisanti, M.P. (2005). Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. J Biol Chem 280, 25134-25145.
    Williams, T.M., and Lisanti, M.P. (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 288, C494-506.
    Wong, T.S., Liu, X.B., Chung-Wai Ho, A., Po-Wing Yuen, A., Wai-Man Ng, R., and Ignace Wei, W. (2008a). Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer 123, 251-257.
    Wong, T.S., Liu, X.B., Wong, B.Y., Ng, R.W., Yuen, A.P., and Wei, W.I. (2008b). Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 14, 2588-2592.
    Wu, L., Fan, J., and Belasco, J.G. (2006). MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103, 4034-4039.
    Yamada, E. (1955). The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1, 445-458.
    Yan, L.X., Huang, X.F., Shao, Q., Huang, M.Y., Deng, L., Wu, Q.L., Zeng, Y.X., and Shao, J.Y. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14, 2348-2360.
    Yang, G., Truong, L.D., Wheeler, T.M., and Thompson, T.C. (1999). Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 59, 5719-5723.
    Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016.
    Zhang, S.X., Garcia-Gras, E., Wycuff, D.R., Marriot, S.J., Kadeer, N., Yu, W., Olson, E.N., Garry, D.J., Parmacek, M.S., and Schwartz, R.J. (2005). Identification of direct serum-response factor gene targets during Me2SO-induced P19 cardiac cell differentiation. J Biol Chem 280, 19115-19126.
    Zhao, J.J., Yang, J., Lin, J., Yao, N., Zhu, Y., Zheng, J., Xu, J., Cheng, J.Q., Lin, J.Y., and Ma, X. (2009). Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst 25, 13-20.
    Zhao, S., and Liu, M.F. (2009). Mechanisms of microRNA-mediated gene regulation. Sci China C Life Sci 52, 1111-1116.

    下載圖示 校內:2021-12-30公開
    校外:2021-12-31公開
    QR CODE