簡易檢索 / 詳目顯示

研究生: 許家毫
Hsu, Jia-Hao
論文名稱: 週期金屬結構之電漿子晶體形成的連續頻譜中的束縛態
Bound States in the Continuum in Plasmonic Crystals
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 57
中文關鍵詞: 連續頻譜中的束縛態表面電漿極化拓樸電荷
外文關鍵詞: FDTD, BICs, Surface plasmonic polaritons, Topological charge
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口試委員審定書 I 中文摘要 II Abstract III 誌謝 X 目錄 XI 圖目錄 XIII 符號 XVI 第一章 序論 1 1.1 前言 1 1.2 研究動機 1 1.3 本文內容 2 第二章 研究相關理論 3 2.1 連續頻譜中的束縛態 (Bound states in the continuum) 3 2.2 拓樸電荷 (Topological charge) 4 2.3 能帶結構 (Band structure) 8 2.4 表面電漿極化 (Surface plasmon polaritons) 11 第三章 數值模擬方法 18 3.1 馬克士威方程式 (Maxwell’s equations)和有限差分時域法 (Finite-Difference Time-Domain method) 18 3.2 摺積完美匹配層 (Convolutional Perfect Matching Layer, CPML) 21 3.3 德汝德模型 (Drude model) 23 3.4 週期性邊界條件(Periodic Boundary Condition) 23 3.5 Order N 24 3.6 帕德近似法(Pade approximant) 25 3.7 模擬空間 26 第四章 研究結果與討論 27 4.1 前言 27 4.2 單層二維電漿子晶體 27 4.3 結構參數變動下的BICs拓樸電荷性質 33 4.4 雙層二維電漿子晶體 37 4.5 三維模擬空間 40 第五章 結論與未來展望 53 5.1 結論 53 5.2 未來展望 54 參考文獻 55

    von Neumann, J. and Wigner, E., “U ̈ber merkwu ̈rdige diskrete Eigenwerte,” Physikalische Zeitschrift 30, 465-467 (1929).
    Meier, M. et al., “Laser action from two-dimensional distributed feedback in photonic crystals.” Appl. Phys. Lett. 74(1), 7–9 (1999).
    Suh, W. et al., “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs.” Appl. Phys. Lett. 82, no. 13 (2003).
    Foley, J. M., Young, S. M. & Phillips, J. D., “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating[J].” Phys. Rev. B. 89(16), 165111 (2014).
    Gao, X. et al., “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs.” Sci. Rep. 6, 31908 (2016).
    Zhen, B. et al., “Topological Nature of Optical Bound States in the Continuum.” Phys. Rev. Lett. 113, no. 25 (2014).
    Shaimaa I. Azzam et al., “Formation of Bound States in the continuum in Hybrid Plasmonic-Photonic Systems.” Phys. Rev. Lett. 121, 253901 (2018).
    Meudt, M. et al., “Hybrid Photonic–Plasmonic Bound States in Continuum for Enhanced Light Manipulation.” Adv. Optical Mater 10.1002 (2020).
    Jin Xiang. et al., “Tailoring the spatial localization of bound state in the continuum in plasmonic-dielectric hybrid system.” Nanophotonics 9(1), 133-142 (2020).
    In Cheol Seo, et al., “Fourier-plane investigation of plasmonic bound states in the continuum and molecular emission coupling.” Nanophotonics 9(15), 4565-4577 (2020).
    Liyi Hsu, et al., “Local field enhancement using a photonic-plasmonic nanostructure.” Opt. Express 29, 1102-1108 (2021).
    Hsu, C., Zhen, B., Stone, A. et al., “Bound states in the continuum.” Nat Rev Mater 1, 16048 (2016).
    Fan, S., Suh, W. & Joannopoulos, J. D., “Temporal coupled-mode theory for the Fano
    resonance in optical resonators.” J. Opt. Soc. Am. A 20, 569–572 (2003).
    Friedrich, H. & Wintgen, D., “Interfering resonances and bound states in the continuum.” Phys. Rev. A 32, 3231–3242 (1985).
    J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “2nd ed. Photonic Crystals: Molding the Flow of Light.” Princeton University Press, Princeton, NJ (2008).
    F Bloch, “U ̈ber die quantenmechanik der elektronen in kristallgittern.” Zeitschrift fu ̈r physic 52(7-8), 555-600 (1929).
    Albert Hang, “Theoretical Solid State Physics: International Series in Natural.” Philosophy. Vol. 1. Elsevier (2016).
    Igor A. Sukhoivanov, Igor V. Guryev, “Photonic Crystals: Physics and Practical Modeling.” Vol. 152. Springer (2009).
    Maier, S.A., “Plasmonics: Fundamentals and Applications.” Springer (2007).
    Kane Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media." IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307 (1966).
    Jean-Pierre Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves.” Journal of computational physics 114(2), 185 (1994).
    J. Alan Roden, Stephen D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media.” Microwave and optical technology letters 27(5), 334 (2000).
    S. D. Gedney and B. Zhao, "An Auxiliary Differential Equation Formulation for the Complex-Frequency Shifted PML." IEEE Transactions on Antennas and Propagation 58(3), 838 (2010).
    P. Drude, “Zur Elektronentheorie der Metalle.” Annalen der physic 306(3), 566 (1900).
    H. Pade ́, “Sur la représentation approchée d’une fonction par des fractions rationnelles.” Annales scientifiques de l’É.N.S., tome 9 (1892).
    S. Dey and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation." IEEE Microwave and Guided Wave Letters, vol. 8, no. 12, 415-417 (1998).

    無法下載圖示 校內:2026-07-22公開
    校外:2026-07-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE