| 研究生: |
許家毫 Hsu, Jia-Hao |
|---|---|
| 論文名稱: |
週期金屬結構之電漿子晶體形成的連續頻譜中的束縛態 Bound States in the Continuum in Plasmonic Crystals |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 連續頻譜中的束縛態 、表面電漿極化 、拓樸電荷 |
| 外文關鍵詞: | FDTD, BICs, Surface plasmonic polaritons, Topological charge |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
von Neumann, J. and Wigner, E., “U ̈ber merkwu ̈rdige diskrete Eigenwerte,” Physikalische Zeitschrift 30, 465-467 (1929).
Meier, M. et al., “Laser action from two-dimensional distributed feedback in photonic crystals.” Appl. Phys. Lett. 74(1), 7–9 (1999).
Suh, W. et al., “Displacement-Sensitive Photonic Crystal Structures Based on Guided Resonance in Photonic Crystal Slabs.” Appl. Phys. Lett. 82, no. 13 (2003).
Foley, J. M., Young, S. M. & Phillips, J. D., “Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating[J].” Phys. Rev. B. 89(16), 165111 (2014).
Gao, X. et al., “Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs.” Sci. Rep. 6, 31908 (2016).
Zhen, B. et al., “Topological Nature of Optical Bound States in the Continuum.” Phys. Rev. Lett. 113, no. 25 (2014).
Shaimaa I. Azzam et al., “Formation of Bound States in the continuum in Hybrid Plasmonic-Photonic Systems.” Phys. Rev. Lett. 121, 253901 (2018).
Meudt, M. et al., “Hybrid Photonic–Plasmonic Bound States in Continuum for Enhanced Light Manipulation.” Adv. Optical Mater 10.1002 (2020).
Jin Xiang. et al., “Tailoring the spatial localization of bound state in the continuum in plasmonic-dielectric hybrid system.” Nanophotonics 9(1), 133-142 (2020).
In Cheol Seo, et al., “Fourier-plane investigation of plasmonic bound states in the continuum and molecular emission coupling.” Nanophotonics 9(15), 4565-4577 (2020).
Liyi Hsu, et al., “Local field enhancement using a photonic-plasmonic nanostructure.” Opt. Express 29, 1102-1108 (2021).
Hsu, C., Zhen, B., Stone, A. et al., “Bound states in the continuum.” Nat Rev Mater 1, 16048 (2016).
Fan, S., Suh, W. & Joannopoulos, J. D., “Temporal coupled-mode theory for the Fano
resonance in optical resonators.” J. Opt. Soc. Am. A 20, 569–572 (2003).
Friedrich, H. & Wintgen, D., “Interfering resonances and bound states in the continuum.” Phys. Rev. A 32, 3231–3242 (1985).
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “2nd ed. Photonic Crystals: Molding the Flow of Light.” Princeton University Press, Princeton, NJ (2008).
F Bloch, “U ̈ber die quantenmechanik der elektronen in kristallgittern.” Zeitschrift fu ̈r physic 52(7-8), 555-600 (1929).
Albert Hang, “Theoretical Solid State Physics: International Series in Natural.” Philosophy. Vol. 1. Elsevier (2016).
Igor A. Sukhoivanov, Igor V. Guryev, “Photonic Crystals: Physics and Practical Modeling.” Vol. 152. Springer (2009).
Maier, S.A., “Plasmonics: Fundamentals and Applications.” Springer (2007).
Kane Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media." IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307 (1966).
Jean-Pierre Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves.” Journal of computational physics 114(2), 185 (1994).
J. Alan Roden, Stephen D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media.” Microwave and optical technology letters 27(5), 334 (2000).
S. D. Gedney and B. Zhao, "An Auxiliary Differential Equation Formulation for the Complex-Frequency Shifted PML." IEEE Transactions on Antennas and Propagation 58(3), 838 (2010).
P. Drude, “Zur Elektronentheorie der Metalle.” Annalen der physic 306(3), 566 (1900).
H. Pade ́, “Sur la représentation approchée d’une fonction par des fractions rationnelles.” Annales scientifiques de l’É.N.S., tome 9 (1892).
S. Dey and R. Mittra, "Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation." IEEE Microwave and Guided Wave Letters, vol. 8, no. 12, 415-417 (1998).
校內:2026-07-22公開