| 研究生: |
蒲洛霏 Prophete, Francesca |
|---|---|
| 論文名稱: |
颱風對傳染性疾病之影響 The Effect of Typhoons on Infectious Diseases in Taiwan |
| 指導教授: |
郭浩然
Guo, How-Ran |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 颱風 、傳染性疾病 、發生率 、氣候變遷 |
| 外文關鍵詞: | typhoons, infectious diseases, incidence, climate change |
| 相關次數: | 點閱:134 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景 :各種極端的天氣和氣候改變造成了急遽氣溫變化及嚴重的降雨現象。天候狀況與疾病息息相關,特別是傳染性疾病。台灣地處氣候不穩定的亞熱帶地區,易受氣候改變影響。氣候的變遷加劇了台灣地區颱風及雨後洪水的發生頻率及強度,同時影響了傳染性疾病的發生。但是少有研究評估颱風對傳染性疾病的影響。
目標:本研究將評估颱風過後特定傳染性疾病發生率及颱風頻率及強度與傳染性疾病的關聯。
材料及方法:由疾病管制署(CDC)資料庫中提取了六種傳染病,這些疾病是:急性A型肝炎,阿米巴痢疾,腸病毒感染病發重症,登革熱,桿菌性痢疾和恙蟲病。本研究囊括2006至2015年間登陸台灣地區的颱風,比較傳染性疾病於颱風前後的發生率。另外,我們使用相對風險 (RR)來測量各強度颱風和雨量對特定傳染性疾病的影響。
結果與討論:在研究期間台灣有52個颱風。由於感染性疾病的潛伏期不同,分別去 除相隔小於 4 及 8 週之颱風。因此,我們包括間隔至少4週的27個颱風,及間隔至少8週的6個颱風。比較颱風過後與颱風之前的病例數,結果顯示急性A型肝炎(相對風險[RR]=1.79;95%信賴區間[CI]:1.17~2.74)和登革熱(RR=1.27;95% CI:1.24~1.30) 風險有增加,但恙蟲病風險有下降(RR=0.84;95% CI:0.76,~0.93)。強烈的颱風增加了恙蟲病的風險(RR=1.38;95% CI:1.03~1.84)。中度和強烈颱風降低登革熱(對於中度颱風RR=0.67;95%CI:0.61~0.74;對於強烈颱風RR=0.64;95%CI:0.59~0.69)和桿菌性痢疾(對於中度颱風,RR=0.42;95%CI:0.28~0.63;對於強烈 颱風,RR=0.34;95%CI:0.19~0.59)的風險。正常降水量與無降水相比,降低急性A型肝炎(RR=0.21;95%CI:0.07~0.59)和恙蟲病(RR=0.73;95%CI:0.57~0.95)的風險,但增加登革熱(RR=1.21;95%CI:1.14~1.29)和桿菌性痢疾(RR=1.59;95%CI:1.05~2.41)的風險。我們發現重度降水導致登革熱風險進一步上升(RR=2.19;95%CI:1.77~2.70)。颱風對登革熱的影響在延遲時間0-15天相同(RR=1.22; 95%CI:1.18~1.26)。對於桿菌性痢疾(RR=1.82;95%CI:1.39~2.38)在0時間點和延遲時間點1天的效果是最強的,急性A型肝炎在延遲時間14天(RR=3.00;95%CI:1.57~5.74)效果是最強的。恙蟲病(RR=0.85; 95%CI:0.74~0.98)在0時間點天和阿米巴痢疾在延遲時間28天(RR=0.67; 95%CI:0.46~0.99)有保護作用。
結論:颱風對感染性疾病的發病率有影響,並根據其強度對它們產生不同的影響。降水量也影響不同傳染病發生率的變化。公共衛生干預措施應考慮到颱風的影響。
Background: Climatic changes are expected to lead to many extreme weather events such as heavy precipitation events and to contribute to a worldwide burden of diseases, notably, infectious diseases. With the natural environment of a subtropical island, Taiwan is extremely vulnerable to the impact of climate change, but few studies have evaluated the effect of typhoon as a particular event on infectious diseases.
Objectives: This study evaluates the changes in the incidence rates of selected infectious diseases following typhoons and examines the associations between typhoon intensity and incidence of infectious diseases.
Material and Methods: The study includes the typhoons that landed on Taiwan and covered the whole island from 2006 to 2015. We extracted data on six infectious diseases from the Centers for Disease Control (CDC) Database, which are acute viral hepatitis A, amoebiasis, enterovirus with severe complications, dengue fever, shigellosis, and scrub typhus. This study compared the number of cases before and after typhoons and evaluated the effects of typhoon intensity and precipitation level by calculating the relative risk (RR).
Results and discussion: There were 52 typhoons to land on Taiwan during the study period. Because of the different incubation periods of the infectious diseases, we excluded typhoons that were less than 4 weeks or 8 weeks apart. Thus, we included 27 typhoons that were at least 4 weeks apart and 6 that were 8 weeks apart. The total number of included cases was 92 for acute hepatitis A, 118 for amoebiasis, 124 for enterovirus, 28 360 for dengue fever, 487 for shigellosis, and 1470 for scrub typhus. When comparing the numbers of cases after typhoons to those before typhoons, the results show an increased risk for acute hepatitis A (Relative Risk [RR], 1.79; 95% Confidence Interval [CI], 1.17, 2.74) and dengue fever (RR, 1.27; 95% CI, 1.24, 1.30) and a decreased risk for scrub typhus (RR, 0.84; 95% CI, 0.76, 0.93). Intense typhoons increased the risk for scrub typhus (RR, 1.38; 95% CI, 1.03, 1.84). Both moderate and intense typhoons decreased the risks for dengue fever (RR, 0.67; 95% CI, 0.61, 0.74 for moderate typhoons; RR, 0.64; 95% CI, 0.59, 0.69 for intense typhoons) and for shigellosis (RR, 0.42; 95% CI, 0.28, 0.63 for moderate typhoons; RR, 0.34; 95% CI, 0.19, 0.59 for intense typhoons).
Compared to no precipitation, a normal precipitation level decreased the risks for acute hepatitis A (RR, 0.21; 95% CI, 0.07, 0.59) and scrub typhus (RR, 0.73; 95% CI, 0.57, 0.95), while it increased the risks of dengue fever (RR, 1.21; 95% CI, 1.14, 1.29) and shigellosis (RR, 1.59; 95% CI, 1.05, 2.41). Heavy precipitation was found to lead to a further increase in the risk for dengue fever (RR, 2.19; 95% CI, 1.77, 2.70). The effect of typhoon on dengue fever was the same from lag 0-15 day (RR, 1.22; 95% CI, 1.18,1.26). The effect was the strongest on lag 0 and lag 1 day for shigellosis (RR, 1.82; 95% CI, 1.39,2.38) and on lag 14 days for acute viral hepatitis A (RR, 3.00; 95% CI, 1.57,5.74). There was a protective effect on lag 0 day for scrub typhus (RR, 0.85; 95% CI, 0.74,0.98) and on lag 28 days for amoebiasis (RR, 0.67; 95% CI, 0.46,0.99).
Conclusion: Typhoons have effects on the incidence of infectious diseases and affect them differently depending on their intensity. The precipitation level also contributes to a change in the incidence of different infectious diseases. Public health interventions should take into account the effects of typhoons.
Ahern, M., Kovats, R. S., Wilkinson, P., Few, R., & Matthies, F. (2005). Global health impacts of floods: epidemiologic evidence. Epidemiologic reviews, 27(1), 36-46.
Barrera, R., Delgado, N., Jiménez, M., & Valero, S. (2002). Eco-epidemiological factors associated with hyperendemic dengue haemorrhagic fever in Maracay City, Venezuela. Dengue Bulletin, 26, 84-95.
Bissell, R. A. (1983). Delayed-impact infectious disease after a natural disaster. The Journal of emergency medicine, 1(1), 59-66.
Brennan, R. J. (2005). Rapid health assessment in Aceh Jaya District, Indonesia, following the December 26 tsunami. Emergency Medicine Australasia, 17(4), 341-350.
Broom, A. K., Lindsay, M., Johansen, C. A., Wright, A., & Mackenzie, J. S. (1995). Two possible mechanisms for survival and initiation of Murray Valley encephalitis virus activity in the Kimberley region of Western Australia. The American journal of tropical medicine and hygiene, 53(1), 95-99.
Campanella, N. (1998). Infectious diseases and natural disasters: the effects of Hurricane Mitch over Villanueva municipal area, Nicaragua. Public health reviews, 27(4), 311-319.
Carlton, E. J., Eisenberg, J. N., Goldstick, J., Cevallos, W., Trostle, J., & Levy, K. (2013). Heavy rainfall events and diarrhea incidence: the role of social and environmental factors. American journal of epidemiology, kwt279.
CDC, Center for Disease Control and Prevention, Taiwan R.O.C. (2013). Regulations Governing the Implementation of the Epidemiological Surveillance and Advance-Alert System for Communicable Diseases.
CDC, Center for Disease Control and Prevention, Taiwan R.O.C. (2015). Taiwan Communicable Disease Control Act
CDC, Center for Disease Control and Prevention, United States (2005). General information on tsunami-related diseases and related health concerns. Retrieved from: http://www.bt.cdc.gov/disasters/tsunamis/healthconcerns.asp.
CDC, Center for Disease Control and Prevention, United States (2005). Infectious disease and dermatologic conditions in evacuees and rescue workers after Hurricane Katrina––Multiple states. MMWR 54, 961-964
Center for the Study of Public Health Impacts of Hurricanes, L. S. U. (2001). Hurricane information. Retrieved from http://www.publichealth.hurricane.lsu.edu/Hurricane Information.htm).
Chakravarti, A., & Kumaria, R. (2005). Eco-epidemiological analysis of dengue infection during an outbreak of dengue fever, India. Virology Journal, 2(1), 1.
Chang, C.-P., Yang, Y.-T., & Kuo, H.-C. (2013). Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. Journal of Climate, 26(12), 4138-4147.
Checkley, W., Epstein, L. D., Gilman, R. H., Figueroa, D., Cama, R. I., Patz, J. A., & Black, R. E. (2000). Effects of EI Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. The Lancet, 355(9202), 442-450.
Chen, M.-J., Lin, C.-Y., Wu, Y.-T., Wu, P.-C., Lung, S.-C., & Su, H.-J. (2012). Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS One, 7(6), e34651.
Chien, F. C., & Kuo, H. C. (2011). On the extreme rainfall of Typhoon Morakot (2009). Journal of Geophysical Research: Atmospheres, 116(D5).
Clements, A. N. (1999). The biology of mosquitoes. Vol. 2. Sensory reception and behaviour. CABI, Wallinford.
Colwell, R. R. (1996). Global climate and infectious disease: the cholera paradigm. Science, 274(5295), 2025.
Committee on Climate, E., Infectious Diseases, and Human Health; Board on Atmospheric Sciences and Climate; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; National Research Council. (2001). Under the Weather: Climate, Ecosystems, and Infectious Diseases.
CWB, Taiwan Central Weather Bureau. Precipitation classification. Retrieved from http://www.cwb.gov.tw/V7e/observe/rainfall/define.htm
Da Glória Teixeira, M., da Conceicao Nascimento Costa, M., Guerra, Z., & Barreto, M. L. (2002). Dengue in Brazil: Situation-2001 and trends. Dengue Bulletin, 26, 70-76.
David A. Relman, M. A. H., Eileen R. Choffnes, and Alison Mack, Rapporteurs; Forum on Global Health; Board on Global Health; Institute of Medicine. (2008). Global Climate Change and Extreme Weather Events: Understanding the Contributions to Infectious Disease Emergence: Workshop Summary
Day, J. F., & Curtis, G. A. (1989). Influence of rainfall on Culex nigripalpus (Diptera: Culicidae) blood-feeding behavior in Indian River County, Florida. Annals of the Entomological Society of America, 82(1), 32-37.
Deng, Z., Xun, H., Zhou, M., Jiang, B., Wang, S., Guo, Q., . . . Marley, G. (2015). Impacts of tropical cyclones and accompanying precipitation on infectious diarrhea in cyclone landing areas of Zhejiang Province, China. International journal of environmental research and public health, 12(2), 1054-1068.
Depradine, C., & Lovell, E. (2004). Climatological variables and the incidence of Dengue fever in Barbados. International journal of environmental health research, 14(6), 429-441.
EPA, Taiwan. (2015). Taiwan at a glance and Climate Change Retrieved from http://unfccc.epa.gov.tw/unfccc/english/04_our_efforts/02_efforts.html
Epstein, P. R. (1993). Algal blooms in the spread and persistence of cholera. Biosystems, 31(2-3), 209-221.
Fleury, M., Charron, D. F., Holt, J. D., Allen, O. B., & Maarouf, A. R. (2006). A time series analysis of the relationship of ambient temperature and common bacterial enteric infections in two Canadian provinces. International journal of biometeorology, 50(6), 385-391.
Ge, X., Li, T., Zhang, S., & Peng, M. (2010). What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmospheric science letters, 11(1), 46-50.
Gubler, D. J., Reiter, P., Ebi, K. L., Yap, W., Nasci, R., & Patz, J. A. (2001). Climate variability and change in the United States: potential impacts on vector-and rodent-borne diseases. Environmental health perspectives, 109 (Suppl 2), 223.
Gubler, D.J. (2009). Vector-borne diseases. Scientific and Technical Review, 28(2), 583-588.
Gullón, P., Varela, C., Martínez, E. V., & Gómez-Barroso, D. (2017). Association between meteorological factors and hepatitis A in Spain 2010–2014. Environment International, 102, 230-235.
Harper, S. L., Edge, V. L., Schuster-Wallace, C. J., Berke, O., & McEwen, S. A. (2011). Weather, water quality and infectious gastrointestinal illness in two Inuit communities in Nunatsiavut, Canada: potential implications for climate change. EcoHealth, 8(1), 93-108.
Hegerl, G. C., voN SToRcH, H., Hasselmann, K., Santer, B. D., Cubasch, U., & Jones, P. D. (1996). Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. Journal of Climate, 9(10), 2281-2306.
Hendricks, E. A., Moskaitis, J. R., Jin, Y., Hodur, R. M., Doyle, J. D., & Peng, M. S. (2011). Prediction and Diagnosis of Typhoon Morakot (2009) Using the Naval Research Laboratory's Mesoscale Tropical Cyclone Model. Terrestrial, Atmospheric & Oceanic Sciences, 22(6).
Hendrickson, L. A., Vogt, R. L., Goebert, D., & Pon, E. (1997). Morbidity on Kauai before and after Hurricane Iniki. Preventive medicine, 26(5), 711-716.
Holland, G. (1993). Ready Reckoner Global Guide to Tropical Cyclone Forecasting World Meteorological Organization.
IPCC. (2013). Fifth Assessment Report, Summary for Policymakers. Retrieved from http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf
Ivers, L. C., & Ryan, E. T. (2006). Infectious diseases of severe weather-related and flood-related natural disasters. Current opinion in infectious diseases, 19(5), 408-414.
Jaakkola, J. (2003). Case-crossover design in air pollution epidemiology. European Respiratory Journal, 21(40 suppl), 81s-85s.
Kalkstein, L. S., & Valimont, K. M. (1986). An evaluation of summer discomfort in the United State using a relative climatological index. Bulletin of the American Meteorological Society, 67(7), 842-848.
Katyal, R., Gill, K. S., & Kumar, K. (1996). Seasonal variations in Aedes Aegypti population in Delhi, India.
Kim, J. H., Ho, C. H., Lee, M. H., Jeong, J. H., & Chen, D. (2006). Large increase in heavy rainfall associated with tropical cyclone landfalls in Korea after the late 1970s. Geophysical research letters, 33(18).
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., . . . Sugi, M. (2010). Tropical cyclones and climate change. Nature Geoscience, 3(3), 157-163.
Ko, W.-C., Cheung, B., Tang, H.-J., Shih, H.-I., Lau, Y.-J., Wang, L.-R., & Chuang, Y.-C. (2007). Melioidosis outbreak after typhoon, southern Taiwan. Emerg Infect Dis, 13(6), 896-898.
Kovats, R. S., Campbell-Lendrum, D. H., McMichel, A. J., Woodward, A., & Cox, J. S. H. (2001). Early effects of climate change: do they include changes in vector-borne disease?. Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1411), 1057-1068.
Kumar, R., Kamal, S., Patnaik, S., & Sharma, R. (2002). Breeding habitats and larval indices of Aedes aegypti (L) in residential areas of Rajahmundry town, Andhra Pradesh. The Journal of communicable diseases, 34(1), 50-58.
Lau, K. M., Zhou, Y., & Wu, H. T. (2008). Have tropical cyclones been feeding more extreme rainfall? Journal of Geophysical Research: Atmospheres, 113(D23).
Lau, W. K., & Zhou, Y. (2012). Observed recent trends in tropical cyclone rainfall over the North Atlantic and the North Pacific. Journal of Geophysical Research: Atmospheres, 117(D3).
LeChevallier, M., Norton, W., & Rosen, J. (1998). Effect of rainfall on Giardia and Cryptosporidium. J Am Water Works Assoc, 90, 66-80.
Lee, C.-S., Wu, C.-C., Wang, T.-C. C., & Elsberry, R. L. (2011). Advances in understanding the “perfect monsoon-influenced typhoon”: Summary from International Conference on Typhoon Morakot (2009). Asia-Pacific Journal of Atmospheric Sciences, 47(3), 213-222.
Li, Z. J., Zhang, X. J., Hou, X. X., Xu, S., Zhang, J. S., Song, H. B., & Lin, H. L. (2015). Nonlinear and threshold of the association between meteorological factors and bacillary dysentery in Beijing, China. Epidemiology and infection, 143(16), 3510-3519.
Lin, C.-Y., Chen, T.-C., Dai, C.-Y., Yu, M.-L., Lu, P.-L., Yen, J.-H., & Chen, Y.-H. (2015). Serological investigation to identify risk factors for post-flood infectious diseases: a longitudinal survey among people displaced by Typhoon Morakot in Taiwan. BMJ open, 5(5), e007008.
Lu, L., Lin, H., Tian, L., Yang, W., Sun, J., & Liu, Q. (2009). Time series analysis of dengue fever and weather in Guangzhou, China. BMC Public Health, 9(1), 395.
Ma, S. L., Tang, Q. L., Liu, H. W., He, J., & Gao, S. H. (2013). Correlation analysis for the attack of bacillary dysentery and meteorological factors based on the Chinese medicine theory of Yunqi and the medical-meteorological forecast model. Chinese journal of integrative medicine, 19(3), 182-186.
Maclure, M. (1991). The case-crossover design: a method for studying transient effects on the risk of acute events. American journal of epidemiology, 133(2), 144-153.
Malilay, J. (1997). Tropical cyclones. In E. Noji (Ed.), The public health consequences of disasters (pp. 470). New York: Oxford University Press
Marcheggiani, S., Puccinelli, C., Ciadamidaro, S., Della Bella, V., Carere, M., Francesca Blasi, M., ... & Mancini, L. (2010). Risks of water-borne disease outbreaks after extreme events. Toxicological & Environmental Chemistry, 92(3), 593-599.
McCarthy, M., Haberberger, R., Salib, A., Soliman, B., El‐Tigani, A., Khalid, I., & Watts, D. (1996). Evaluation of arthropod‐borne viruses and other infectious disease pathogens as the causes of febrile illnesses in the Khartoum Province of Sudan. Journal of Medical Virology, 48(2), 141-146.
Medline, Medline Plus (2016). U.S. National Library of Medicine: Infectious Diseases. Retrieved from https://www.nlm.nih.gov/medlineplus/infectiousdiseases.html
Meteo, Meteo Office United Kingdom (2016). Tropical cyclones facts. Retrieved from http://www.metoffice.gov.uk/weather/tropicalcyclone/facts
Naumova, E., Jagai, J., Matyas, B., DeMaria, A., MacNeill, I., & Griffiths, J. (2007). Seasonality in six enterically transmitted diseases and ambient temperature. Epidemiology and Infection, 135(02), 281-292.
Neumann, C. (1993). Global Overview Global Guide to Tropical Cyclone Forecasting: World Meteorological Organization.
Nielsen, N., Makaula, P., Nyakuipa, D., Bloch, P., Nyasulu, Y., & Simonsen, P. (2002). Lymphatic filariasis in Lower Shire, southern Malawi. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96(2), 133-138.
NOAA, National Oceanic and Atmospheric Administration (USA). Tropical cyclone introduction. Retrieved from http://www.srh.noaa.gov/jetstream/tropics/tc.html
Panda, S., Pati, K. K., Bhattacharya, M. K., Koley, H., Pahari, S., & Nair, G. B. (2011). Rapid situation & response assessment of diarrhoea outbreak in a coastal district following tropical cyclone AILA in India. Indian Journal of Medical Research, 133(4), 395.
Parmenter, R. R., Yadav, E. P., Parmenter, C. A., Ettestad, P., & Gage, K. L. (1999). Incidence of plague associated with increased winter-spring precipitation in New Mexico. The American journal of tropical medicine and hygiene, 61(5), 814-821.
Patz, J. A., McGeehin, M. A., Bernard, S. M., Ebi, K. L., Epstein, P. R., Grambsch, A., ... & Samet, J. M. (2000). The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the US National Assessment. Environmental health perspectives, 108(4), 367.
Pradutkanchana, J., Pradutkanchana, S., Kemapanmanus, M., Wuthipum, N., & Silpapojakul, K. (2003). The etiology of acute pyrexia of unknown origin in children after a flood. Southeast Asian J Trop Med Public Health, 34(1), 175-178.
Ramaswamy, V., Schwarzkopf, M., Randel, W., Santer, B., Soden, B., & Stenchikov, G. (2006). Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science, 311(5764), 1138-1141.
Redlener, I., & Reilly, M. J. (2012). Lessons from Sandy—preparing health systems for future disasters. New England Journal of Medicine, 367(24), 2269-2271.
Rose, J. B., Epstein, P. R., Lipp, E. K., Sherman, B. H., Bernard, S. M., & Patz, J. A. (2001). Climate variability and change in the United States: potential impacts on water-and foodborne diseases caused by microbiologic agents. Environmental health perspectives, 109(Suppl 2), 211.
Santer, B. D., Taylor, K., Wigley, T., Johns, T., Jones, P., Karoly, D., . . . Ramaswamy, V. (1996). A search for human influences on the thermal structure of the atmosphere. Nature, 382(6586), 39-46.
Santer, B. D., Wehner, M. F., Wigley, T., Sausen, R., Meehl, G., Taylor, K., . . . Boyle, J. (2003). Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301(5632), 479-483.
Sharma, R., Panigrahi, N., Kaul, S., Shivlal, B. K., & Bhardwaj, M. (1999). Status report of DF/DHF during 1998 in the National Capital Territory of Delhi, India. Dengue Bull, 23, 109-112.
Shultz, J. M., Russell, J., & Espinel, Z. (2005). Epidemiology of tropical cyclones: the dynamics of disaster, disease, and development. Epidemiologic reviews, 27(1), 21-35.
Singh, R. B., Hales, S., de Wet, N., Raj, R., Hearnden, M., & Weinstein, P. (2001). The influence of climate variation and change on diarrheal disease in the Pacific Islands. Environmental health perspectives, 109(2), 155.
Sommer, A., & Mosley, W. (1972). East Bengal cyclone of November, 1970:
Su, H.-P., Chan, T.-C., & Chang, C.-C. (2011). Typhoon-related leptospirosis and melioidosis, Taiwan, 2009. Emerg Infect Dis, 17(7), 1322-1324.
Sukri, N. C., Laras, K., Wandra, T., Didi, S., Larasati, R. P., Rachdyatmaka, J. R., . . . Hartati, S. (2003). Transmission of epidemic dengue hemorrhagic fever in easternmost Indonesia. The American journal of tropical medicine and hygiene, 68(5), 529-535.
WHO, W. H. O. (1999). Monograph on water resources and human health in Europe. Rome, Italy.. WHO European Centre for Environment and Health/European Environment Agency
WHO, W. H. O. (2003). Climate change and Human Health: Risk and Responses. Retrieved from http://www.who.int/globalchange/publications/climchange.pdf
WHO, W. H. O. (2005). Epidemic-prone disease surveillance and response after the tsunami in Aceh Province, Indonesia. Weekly Epidemiology Record 80:160–4
WHO, W. H. O. (2016). Media Centre Fact Sheets: Vector-borne diseases. Retrieved from http://www.who.int/mediacentre/factsheets/fs387/en/
Yasuoka, J., & Levins, R. (2007). Ecology of vector mosquitoes in Sri Lanka--suggestions for future mosquito control in rice ecosystems.
Zheng, J., Han, W., Jiang, B., Ma, W., & Zhang, Y. (2017). Infectious Diseases and Tropical Cyclones in Southeast China. International journal of environmental research and public health, 14(5), 494.