簡易檢索 / 詳目顯示

研究生: 黃心儀
Huang, Hsin-Yi
論文名稱: 失神癲癇大鼠的大腦誘發電位與學習能力受棘徐波改變之研究
Evoked cortical activity and learning ability are altered by spike-wave-discharges in absence epileptic rats
指導教授: 蕭富仁
Shaw, Fu-Zen
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系認知科學碩士班
MS in Cognitive Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 83
中文關鍵詞: 棘徐波Long-Evans大鼠體感覺誘發電位電刺激反向制約學習
外文關鍵詞: Spike-wave discharges, Long-Evans rats, somatosensory evoked potentials, electrical stimulation, reversal conditioning learning
相關次數: 點閱:118下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 失神癲癇的棘徐波出現時,患者多會伴隨短暫意識喪失的認知與行為失調現象,且行為反應失調現象會因作業難度增加而更明顯。失神癲癇動物模型也可觀察到棘徐波出現時之行為異常現象,在經過制約學習訓練後,失神癲癇動物出現棘徐波時之制約作業表現的影響結果卻有明顯的不一致,且對於失神癲癇動物出現棘徐波時之學習歷程卻鮮少探討。因此,本論文利用自發性失神癲癇大鼠進行T型迷宮之反向學習作業,透過臉部刺激作為線索,進行正常與棘徐波狀態下之學習、再認的評估工作。在大鼠清醒/棘徐波出現時給予臉部肌肉不同強度的電刺激,結果發現低強度電刺激無法明顯抑制棘徐波,而高強度電刺激會幾乎完全抑制棘徐波進行;且在棘徐波出現時給予低強度臉部電刺激所產生的大腦誘發電位波形之型態與延遲時間和清醒時有顯著不同,但不管是棘徐波或正常情況下給予高強度電刺激時之大腦誘發電位卻無顯著差異。在失神癲癇大鼠進行反向制約學習作業部分,發現在正常腦波下正確率會隨著學習歷程顯著增加,但棘徐波狀態下的正確率卻無顯著變化,而反應時間在所有狀態下皆隨著學習時間的增加而逐漸減少;在反向作業再學習部分,正常腦波下正確率會隨著學習歷程顯著增加,而棘徐波出現狀態下正確率會轉變成隨機猜測。在反向學習作業的再測部分,對於已經學會反向作業的大鼠而言,不管是正常腦波下與棘除波出現下的正確率幾乎是100%;未學會反向作業之大鼠,不管是哪一種腦波狀態的正確率都只有50%。本論文亦發現在棘徐波出現的情況下,大鼠的反向制約作業記憶會被毀滅。綜合上述結果,棘徐波會受到不同電流強度的影響而改變大腦皮質電位反應,且棘徐波會影響大鼠的學習能力與記憶的調節,但棘徐波不影響反向作業記憶的提取。

    Absence epilepsy, which is characterized by spike-wave discharges (SWDs), is often accompanied by a brief loss of consciousness and behavior impairment. This behavioral impairment during the occurrence of an SWD is influenced by the complexity or difficulty of a cognitive task. Animal models of absence epilepsy display abnormal immobile behavior accompanied by SWDs. The performance of learned conditioning paradigms in response to SWDs has great differences in previous studies. There is largely unknown about the learning progress during SWDs. The present study used the side of face stimulation as a conditioning stimulus to pair the location of a food pellet in a T maze in rats with spontaneous SWDs. The performance of learning progress and recognition session during the situations of normal brain wave (noSWD) and SWDs was assessed. First, four intensities (i.e., motor threshold, 1.2motor threshold, 0.6 mA, 1 mA) were used to stimulate face muscles. Two kinds of low-intensity stimulations had little effect on SWDs, but the other two kinds of stimulations significantly stopped SWD progression. Amplitudes and latencies of the cortical somatosensory evoked potentials (SEPs) elicited by two kinds of low-intensity stimulations were significant difference during SWDs compared to those of noSWD. However, SEPs in response to the other two kinds of high-intensity stimulations were no difference between the noSWD and SWD conditions. Second, the side of face stimulated by the current of a 1.2motor threshold was a conditioning stimulus to pair with the location of a food pellet in the multiple phases of a reversal learning task. The accuracy showed significantly progressive increase during noSWD but no change during SWDs. Reaction time showed significantly progressive reduction in both conditions. In the relearned phase of the reversal learning task, accuracy showed significantly progressive increase during noSWD. However, the performance progressively became a random selection during SWDs. In the recognition session, well-trained rats under the noSWD condition showed ~100% of accuracy in either noSWD or SWD situations. In those trained under SWDs, the recognition accuracy was ~50% in both conditions. Third, memory acquired in the reversal leaning task was extinct during SWDs. Results of the present study indicate that SWDs and SEPs are affected by different stimulation intensities. SWDs modulate learning ability and memory, but have no effect on the retrieval of a memory.

    中文摘要 I Abstract III Acknowledgment V Content VI List of Tables X List of Figures XI Abbreviation XIV Introduction 1 Loss of consciousness in absence seizure 1 Absence epilepsy and impairment of consciousness 2 Animal models of absence seizure 4 Long-Evans rats with 7-12 Hz spontaneous spike wave discharges 5 7-12 Hz spontaneous oscillations in Long-Evans rats and consciousness under SWD 6 Experiment I: SWDs and SEPs 9 Research Motivations and Objectives 9 Methods and Materials 10 Animal preparations and surgeries 10 ECoG recording 11 Procedural of experiments 12 Statistical analysis 12 Results 13 Experiment II: Two phases reversal learning task 15 Research Motivations and Objectives 15 Methods and Materials 16 Animal preparations and surgeries 16 Apparatus 16 Food restriction and habituation 17 Conditioning and reversal learning task 17 Phase I (Conditioning learning) 17 Phase II (Reversal learning) 18 Procedural of experiments 19 Statistical analysis 20 Results 21 Phase I (Conditioning learning) 21 Phase II (Reversal learning) 23 Experiment III: Three phases reversal learning task 25 Research Motivations and Objectives 25 Methods and Materials 27 Animal preparations and apparatus 27 Conditioning and reversal learning task 27 Phase I (Conditioning learning) 27 Phase II (Reversal learning) 28 Phase III (Re-learn conditioning learning) 29 Procedural of experiments 29 Statistical analysis 30 Results 31 Phase I (Conditioning learning) 31 Phase II (Reversal learning) 32 Phase III (Re-learn conditioning learning) 33 Learning curve comparison of phase I and phase III in noSWD-SWD-noSWD group 34 Discussion 35 Major findings 35 SWDs and Somatic evoked potentials 35 Two phases reversal learning task under SWD/no SWD 37 Three phases reversal learning task under SWD/no SWD 40 Spontaneous SWDs in Long-Evans rats 41 Conclusion 43 Future work 44 References 45 Tables 57 Figures 62

    Aker, R. G., Ozkara, C., Dervent, A. I., & Yilmaz Onat, F. (2002). Enhancement of spike and wave discharges by microinjection of bicuculline into the reticular nucleus of rats with absence epilepsy. Neurosci Lett, 322, 71-74.
    Berman, R., Negishi, M., Vestal, M., Spann, M., Chung, M. H., Bai, X., Purcaro, M., Motelow, J.E., Danielson, N., Dix-Cooper, L., Enev, M., Novotny, E. J., Constable, R., T., & Blumenfeld, H. (2010). Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures. Epilepsia, 51, 2011–2022.
    Blumenfeld, H. (2002). Neuroanatomy through clinical cases. Sunderland (MA): Sinauer Assoc. Publ., Inc.
    Blumenfeld, H. (2005). Consciousness and epilepsy: why are patients with absence seizure absent? Prog in Brain Res, 150, 271--286.
    Blumenfeld, H. (2011). Epilepsy and the consciousness system: transient vegetative state?. Neurol Clin, 29, 801-823.
    Blumenfeld, H. (2012). Impaired consciousness in epilepsy. Lancet Neurol, 11, 814-826.
    Blumenfeld, H.,& Taylor, J. (2003). Why do seizures cause loss of consciousness? Neuroscientist, 9, 301-310.
    Boudin, G., Barbizet, J., & Masson, S. (1958). Etude de la dissolution de la conscience dans 3 cas de petit mal avec crises prolongees. Rev Neurol, 99, 483-487.
    Bureau, M., Guey, J., Dravet, C., & Roger, J. (1968). Astudy of the distribution of petit mal absences in the child in relation to his activities. Electroen Clin Neuro, 25, 513.
    Butter, C. (1969). Preseveration in extinction and in discrimination reversal tasks following selective frontal ablations in macaca mulatta. Physiol Behav, 4, 163-171.
    Buzsáki, G., Smith, A., Berger, S., Fisher, L. J., & Gate, F. H. (1980). Peti mal epilepsy and parkinsonian tremor: hypothesis of a common pacemaker. Neuroscience, 36, 1-14.
    Chan, K. F.Y., Jia, Z., Murphy, P. A., Burnham, W. M, Cortez, M. A., & Snead 3rd, O. C. (2004). Learning and memory impairment in rats with chronic atypical absence seizures. Exp Neurol, 190, 328-336.
    Chang, B. S., & Lowenstein, D. H. (2003). Epilepsy. N Engl J Med 349, 1257-1266.
    Chipaux, M., Vercueil, L., Kaminska, A., Mahon, S., & Charpier, S. (2013). Persistence of cortical sensory processing during absence sezures in human and an animal model: evidence from EEG and intracellular recordings. PLOS ONE, 8, 1-12.
    Clark, L., Cools, R., & Robbins, T. W. (2004). The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning. Brain Cogn, 55, 41-53.
    Coenen, A. M. L., & van Luijtelaar, E. (2003). Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet, 33, 635-655.
    Coenen, A. M. L., Drinkenburg, W. H. I. M., Inoue, M., & van Luijtelaar, E. L. J. M. (1992). Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats. Epilepsy Res, 12, 75-86.
    Crunelli, V., & Leresche, N. (2002). Childhood absence epilepsy: genes, channels, neurons and networks. Nature Rev Neurosci, 3, 371-382.
    Danober, L., Deransart, C., Depaulis, A., Vergnes, M., & Marescaux, C. (1998). Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 55, 27-57.
    Davdoff, R. A., & Johnson, L. C. (1964). Paroxysmal EEG activity and cognitive-motor performance. Electroen Clin Neuro 16, 343-354.
    Drinkenburg, W. H. I.M., Schuurmans, M. L. E. J., Coenen, A. M. L., Vossen, J. M. H., & van Luijtelaar, E. L. J. M. (2003). Ictal stimulus processing during spike-wave discharges in genetic epileptic rats. Behav Brain Res., 143, 141-146.
    Egner, T., & Gruzelier, J., H. (2003). Ecological validity of neurofeedback: modulation of slow wave EEG enhances musical performance. Neuroreport, 14, 1221-1224.
    WundtFontanini, A., & Katz, D. B. (2005). 7 to 12 Hz activity in rat gustatory cortex reflects disengagement from a fluid self-administration task. J. Neurophysiol 93, 2832–2840.
    Fanselow, E. E., & Nicolelis, M. A. (1999). Behaoral modulation of tactile responses in the rat. J. Neuroscience, 17, 7603–7616.
    Fanselow, E. E., Sameshima, K., Baccala, A. L., & Nicolelis, M. A. (2001). Thalamic bursting in rats during different awake behavioral states. Proc Natl Acad Sci USA 98, 15330–15335.
    Fisher, R., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., & Engel, J. (2005). Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46, 470–472.
    Gastaut, H. (1954). The brain stem and cerebral electrogenesis in relation to consciousness. Brain Mechanisms and Consciousness., Thomas, Springfield, ILH, pp. 249-283.
    Gloor, P., & Fariello, R. G. (1988). Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci 11, 63-68.
    Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch,W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performanc in human subjects. Appl Psychophys and Biof, 30, 1-10.
    Herkenham, M. (1980). Laminar organization of thalamic projections to the rat neocortex. Science, 207, 532-535.
    Hollaway, K. J. (2006). New Research on Epilepsy and Behavior. Nova Science Publishers.
    Hornak, J., O'Doherty, J., Bramham, J., Rolls, E. T., Morris, R. G., Bullock, P. R. & Polkey, C. E. (2004). Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci, 16, 463-478.
    Hosford, D. A., & Wang, Y. (1997). Utility of the lethargic (lh/lh) mouse model of absence seizures in predicting the effects of lamotrigine, vigabatrin, tiagabine, gabapentin, and topiramate against human absence seizures. Epilepsia, 38, 408-414.
    Huang, H. Y., Lee, H.W., Chen, S. D., & Shaw, F. Z. (2012). Lamotrigine ameliorates seizures and psychiatric comobidity in a rat model of spontaneous absence epilepsy. Epilepsia, 53, 2005-2014.
    ILAE. (1981). Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the commission on classification and terminology of the International League Against Epilepsy. Epilepsia, 22, 489-501.
    Inoue, M., van Luijtelaar, E. L. J. M., Vossen, J. M. H., & Coenen, A. M. L. (1992). Visual evoked potentials during spontaneously occurring spike-wave discharges in rats. Electroencephalogr Clin Neurophysiol, 84, 172-179.
    Jone, B., & Mishkin, M. (1972). Limbic lesions and the problem of stimulus - reinforcement associations. Exp Neurol, 36, 362-377.
    Jung, R. (1939). Uber vegetative reaktionen und hemmugswirkung von sinnesreizen im kleinen epileptischen anfall. Nervenarzt, 12, 169-185.
    Kaplan, B. J. (1985). The epileptic nature of rodent electrocortical polyspiking is still unproven. Exp Neurol 88, 425-436.
    Killory, B. D., Bai, X., Negishi, M., Vega, C., Spann, M. N., Vestal, M., Guo, J., Berman, R., Danielson, N., Trejo, J., Shisler, D., Novotny Jr, E. J., Constable, R. T. & Blumenfeld, H. (2011). Impaired attention and network connectivity in childhood absence epilepsy. Neuroimage, 56, 2209-2217.
    Klimesch, W., Doppelmayr, M., & Hanslmayr, S. (2006). Upper alpha ERD and absolute power: their meaning for memory performance. Brain Res, 159, 151-165.
    Kooi, K. A., & Hovry, H. B.(1957). Alterations in mental function and paroxysmal cerebral activity. Arch Neurol Psychiat, 78, 264-271.
    Lecomte, G., & Juhel, J. (2011). The effects of neurofeedback training on memory performance in elderly subjects. Psychology, 2, 846-852.
    Lennox, W.G., Gibbs, F. A., & Gibbs, E. L. (1936). Effect on the electroencephalogram of drugs and conditions which influence seizures. Arch. Neurol Psychiatr, 36, 1236-1250.
    Mirsky, A. F., Duncan, C. C., & Myslobodsky, M.S. (1986). Petit-mal epilepsy: a review and integration of recent information. J. Clin. Neurophysiol 3, 179–208.
    Mirsky, A. F., Primac, D. W., Marsan, C. A., Rosvold, H. E., & Stevens, J.R. (1960). A comparison of the psychological test performance of patients with focal and nonfocal epilepsy. Exp Neurol 2, 75–89.
    Mirsky, A. F., & van Buren, J.M. (1965). On nature of absence in centrncephalic epilepsy: a study of some behavioral electroencephalographuc and autonomic factors. Electroencephalogr Cli Neurophsiol, 18, 334–348.
    Meeren, H. K. M., van Capellen van Walsum, A. M., van Luijtelaar, E.L.J.M., & Coenen, A. M. L. (2001). Auditory evoked potentials from auditory cortex, medial geniculate nucleus, and inferior colliculus during sleep–wake states and spike-wave discharges in the WAG/ Rij rat. Brain Res, 898, 321–331.
    Meeren, H. K. M., van Luijtelaar E. L. J. M., & Coenen, A. M. L. (1998). Cortical and thalamic visual evoked potentials during sleep-wake states and spike-wave discharges in the rat. Electroencephalogr Clin Neurophysiol, 108, 306–319.
    McAlonan, K. & Brown, V. J. (2003). Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res, 146, 97-103.
    McCandless, D. W. (2012). Epilepsy: Animal and Human Correlations. New York: Springer.
    Nersesyan, H., Herman, P., Erdogan, E., Hyder, F. & Blumenfeld, H. (2004). Relative changes in cerebral blood flow anf neuronal activity in local microdomains during generalised seizure. J Cereb Blood Flow Metab, 24, 1057-1068.
    Nersesyan, H., Hyder, F., Rothman, D., & Blumenfeld, H. (2004). Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats. J Cereb Blood Flow Metab, 24, 589-599.
    Nicolelis, A. M., Baccala, L., A., Lin, R. C., & Chapin, J. K. (1995). Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science, 268, 1353-1358.
    Nicolelis, A. M. & Fanselow, E. E. (2002). Dynamic shifting in thalamcortical processing during different behavioural states. Nat. Neurosci, 357, 1753-1758.
    Osterhagen, L., Breteler, M., van Luijtelaar, G. (2010). Does aroual inferfere with operant conditioning of spike-wave discharges in genetic epileptic rats? Epilepsy Res, 90, 75-82.
    Pavone, A., Niedermeyer, E. (2000). Absence seizures and the frontal lobe. Clin Electroenceph 31, 153-156.
    Paxinos, G. & Watson, C. (1982). The rat brain in stereotaxic coordinates. Sydney: Academic Press.
    Polack, P. O., & Chapier, S. (2006). Intracellular activity of cortical and thalamic neurons during high-voltage rhythmic spike discharge in Long-Evans rats in vivo. J Phisiol, 571, 461-476.
    Rolls, E. T. (1999). The brain and emotion. Oxford: OUP
    Sakata, S., Yamamori, T., & Sakurai, Y. (2005). 7-12 Hz cortical oscillations: behavioral context and dynamics of prefrontal neuronal ensembles. Neuroscience, 134, 1099-1111.
    Semba, K., Szhchtman, H., & Komisaruk, B. R. (1980). Synchrony among rhythmical facial tremor, neocortical 'alpha' waves, and thalamic non-sensory neuronal bursts in intact awake rats. Brain Res, 195, 281-298.
    Semba, K., & Komisaruk, B. R. (1984). Neural substrates of two different rhythmical vibrissal movements in the rat. Neuroscience, 12, 761-774.
    Shaw, F. Z. (2004). Is spontaneous high-voltage rhythmic spike discharge in Long Evans rats an absence-like seizure activity? J Neurophysiol, 91, 63-77.
    Shaw, F. Z. (2007). 7-12 Hz high-voltage rhythmic spike discharges in rats evaluated by antiepileptic drugs and flicker stimulation. J Neurophysiol, 97, 238-247.
    Shaw, F. Z., Chuang, S. H., Shieh, K. R., & Wang, Y. J. (2009). Depression-and anxiety-like behaviors of a rat model with absence epileptic discharges. Neuroscience, 160, 382-393.
    Shaw, F. Z., Lai, C. J., & , Chiu, T. H. (2002). A low-noise flexible integrated system for recording and analysis of multiple electrical signals during sleep/wake states in rats. J Neurosci Methods, 118, 77-87.
    Shaw, F. Z., & Liao, Y. F. (2005). Relation between activities of the cortex and vibrissae muscle during high-voltage rhythmic spike discharges in rats. J Neurophysiol 93, 2435-2448.
    Shaw, F., Z, Lee, S. Y., & Chiu, T. H. (2006). Modulation of somatosensory evoked potential during wake-sleep states and spike-wave discharge in the rat. Sleep, 29, 285-293.
    Snead 3rd, O., Depaulis, A., Vergnes, M., & Marescaux, C. (1999). Absence epilepsy: advances in experimental animal models. Adv Neurol, 79, 253-278.
    Sobolewski, A., Swiejkowski, D. A., Wróbel, A., & Kublik, E. (2011). The 5-12 Hz oscillations in the barrel cortex of awake rats - Sustained attention during behavioral idling? Clin Neurophysiol, 122, 483-489.
    Steriade, M., & Contreras, D. (1998). Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. J Neurophysiol, 80, 1439-1455.
    Tort, A. B. L., Fontanini, A., Kramer, M. A., Jones-Lush, L. M.,& Kopell, N. J. (2010). Cortical networks produce three distinct 7-12 Hz rhythms during single sensory responses in the awake rat. J Neurosci, 30, 4315-4324.
    van Luijtelaar, G., & Sitnikova, E. (2006). Global and focal aspects of absence epilepsy: the contribution of genetic models. Neurosci Biobehav Rev, 30, 983-1003.
    van Luijtelaar,E. L. J. M., van der Werf, S. J., Vossen, J. M. H., & Coenen, A. M. L. (1991). Arousal, performance and absence sezures in rats. Electroencephalogr Clin Neurophysiol, 79, 430-434.
    Vergnes, M., Marescaux, C., Boehrer, A., & Depaulis, A. (1991). Are rats with genetic absence epilepsy behaviorally impaired? Epilepsy Res, 9, 97-104.
    Wiest, M.,C.& Nicolelis, A. M. (2003). Behavioral detection of tactile stimuli during 7-12 Hz cortucal oscillations in awake rats. Nat Neurosci, 6, 913-914.
    Zoefel, B., Huster, R. J., Herrmann, C., S. (2010). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54, 1427-1431.

    下載圖示 校內:2019-02-14公開
    校外:2019-02-14公開
    QR CODE