| 研究生: |
范振祺 Fan, Chen-Chi |
|---|---|
| 論文名稱: |
以智慧空調系統提升工作效率之研究 Research on Smart HVAC System for Improving Productivity |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 智慧空調系統 、工作效率 、熱舒適 、PMV 、VTS |
| 外文關鍵詞: | Smart HVAC, Productivity, Thermal Comfort, PMV, VTS |
| 相關次數: | 點閱:94 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球氣候暖化,空調的使用率也日益增加。台灣辦公建築平均總耗能,空調耗能佔了46.1%,為最大耗能佔比,故辦公室的空調節能將是節能對策的重點項目。根據我國的空調節約能源措施,室內溫度高於28°C才始調控空調設備,且最低設定溫度為26°C以節約用電。但有文獻指出溫度高於25°C,每上升1°C工作效率會下降2%。英國CIBSE提出人事費是能源成本的100~200倍,也就是說能源成本相當於0.5%~1.0%的人事費。目的是了解人體在不同溫度環境下的心理主觀感受與工作效率之間的相互關係。
為了解人在室內環境中,其心理、生理及工作效率如何受溫度影響。首先以實驗方式,招募年齡20~30歲47位男性及42位女性,在22°C、25°C、27°C、29°C的空氣溫度下,評估其主觀心理評價及工作效率,同時量測生理資訊。心理部分以問卷方式進行,工作效率的評估採用維也納測驗系統VTS進行基本工作能力測驗-數字加減法及差異辨識測驗。其次,根據實驗結果分析後得出提高舒適度、工作效率之控制邏輯。
研究結果發現,不同性別、生理資訊的人其主觀心理及工作效率在不同溫度下的表現不同。因此,依據實驗成果提出三種空調控制邏輯之建議,分別為舒適控制、節能控制及工作效率控制,其中又可分為男女綜合、男性及女性等不同情況,可依據室內環境成員之性別比例參考使用。舒適控制方面,男女綜合情況建議將空調溫度設為26.2°C,男性為25.9°C,女性為26.6°C。節能控制可確保80%的人滿意,男女綜合建議溫度控制在27.4°C,男性為27.6°C,女性為27.7°C。而工作效率控制,男性建議溫度為27°C,女性為25°C,即可在1小時內有較佳的專注力。基於實驗結果得到不同情況下最舒適PMV,在相同條件的情況下,可調整使用者位置之風速達相同熱舒適度。男女綜合情況下最舒適之PMV為0.69,若要調整至符合國內空調控制基準26°C-28°C,則之風速需要調整為0.15-0.41 m/s。男性PMV為0.59,風速需調整為0.18-0.50 m/s。女性PMV為0.79,風速需調整為0.08-0.33 m/s。綜合情況及男性之節能控制之PMV為0.99,風速需調整為0.23 m/s。女性節能控制之PMV為1.07,則風速需調整為0.2 m/s。三種空調控制邏輯針對大空間的辦公環境可做功能性的分區控制,不僅能提升使用者舒適度及工作效率,更能降低空調耗能。
As the global warming aggravated, the demand of air conditioning rises exacerbating the energy consumption. In Taiwan office buildings, air conditioning is responsible for the largest proportion of total building energy consumption, soenergy conservation ofair-conditioning will be a key project for energy-saving measures. Taiwan's energy conservation policy recommends that the air conditioning temperature be set at 26 ℃- 28 ℃. However, related research indicates that an increase in temperature leads to a decrease in work efficiency. And personnel costs are much higher than energy costs. Therefore, how to balance comfort, energy-saving, and productivity in air conditioning systems is the problem to be explored in this study.
To understand how people's psychology, physiology, and productivity are affected by temperature in an indoor environment. This study recruited 47 males and 42 females in their 20s and 30s to conduct experiments and evaluated their subjective psychological evaluation and productivity at 22 ℃, 25 ℃, 27 ℃, 29 ℃ air temperature. The psychological part is conducted through questionnaire. The productivity assessment is based on the Vienna Test System VTS: digital addition and subtraction, and difference identification tests.
The results of this study found that people with different genders and physiological information had different psychology and productivity at different temperatures. Therefore, based on the experimental results, three air conditioning control logics are proposed, which are comfort control, energy-saving control, and work productivity control. They can be divided into different situations such as male and female and can be used according to the gender ratio of indoor environment members. The three air conditioning control logics can be used for functional partition control of a large space office environment, which not only improves user comfort and productivity but also reduces air conditioner energy consumption.
(一) 中文文獻
1. 林憲德 (2014),綠色建築,詹氏書局。
2. 台灣綠色生產力基金會 (2016),非生產性質行業能源查核年報。
3. 行政院 (2006),政府機關辦公室節約能源措施。
4. 楊俊欣、范植賢、蔡尤溪(2003),辦公建築空調全年耗能電腦模擬與耗能因子解析,冷凍與空調期刊論文,第22期,頁77-85。
5. 吳旭帆 (2007),室內物理環境因子對人員感知影響之研究,屏東商業技術學院碩士論文。
6. 林景鴻 (2011),應用眼球追蹤系統探討不同照明方式下VDT作業對工作效率影響之研究,成功大學碩士論文。
7. 李冠慧 (2016),照明形式與色溫度對工作者的情緒與工作績效之影響-以直管型螢光燈為例,中原大學碩士論文。
8. 陳柏瑎 (2008),調控室內作業環境溫度對人體反應影響之研究,成功大學碩士論文。
9. 王俞翔 (2010),室內風頻感知對工作效率影響之研究,成功大學碩士論文。
10. 陳念祖、江哲銘、劉光盛、許祐源 (2011),溫度與風頻變化對工作效率影響之研究,行政院國家科學委員會專題研究計畫成果報告。
11. 謝明燁 (1999),視覺對環境音感知之心理影響研究,成功大學碩士論文。
12. 漥田千貫/著、陳文哲/校譯 (1992),生產效率管理-效率衡量與提高對策,中興管理顧問公司發行。
13. 林惠玲、陳正倉 (2003),應用統計學,雙葉書廊有限公司。
(二) 日文文獻
1. 石井仁、堀越哲美,1996,光・熱環境要因が人体生理心理反応に及ぼす複合的影響,日本梗概集。
2. 田辺新一,2017,快適性を評価する考え方とその指標(2)快適性を評価する新しい考え方,空気調和・衛生工学会,Vol.91,No.10,pp.37‐44.。
3. 空気調和・衛生工学会,2014,我慢をしない省エネへ夏季オフィスの冷房に関する提言-報告書空衛学会提言。
4. 羽田 正沖、 西原 直枝、田辺 新一,2009,温熱環境と換気量が知的生産性に与える影響に関する被験者実験,日本建築学会環境系論文集,第74巻,第638号,507-515。
(三) 英文文獻
1. Fanger, P.O. (1972). Thermal comfort: analysis and applications in environmental engineering. New York: McGraw-Hill.
2. ISO 7730, (1984) . Indices for thermal comfort, ISO Standard 7730, New Tyok, Internation Standards Organization.
3. Kosonen, R., Tan, F., (2004). The Effect of Perceived Indoor Air Quality on Productivity Loss. Energy and Buildings, 36, 981-986.
4. Wargocki, P., Frontczak, M., Schiavon, S., Goins, J., Arens E., & Zhang, H.,(2012). Satisfaction and self-estimated performance in relation to indoor environmentalparameters and building features, Paper presented at the 10th International Conference on Healthy Buildings, Australia.
5. Seppanen, O., Fisk, W. J., Faulkner, D. (2004). Cost benefit analysis of the night-time ventilative cooling in office building, Paper presented at the Healthy Buildings 2003 Conference, Singapore.
6. Seppanen, O., Fisk, W. J., & Lei, Q. H., (2006). Effect of temperature on task performance in office environment, INDOORAIR, 16, 1, 28-36.
7. Lan, L., & Lian, Z., (2009). Use of neurobehavioral tests to evaluate the effects of indoor environment quality on productivity, Building and Environment, 44, 2208-2217.
8. Lan, L., Wargocki, P., & Lian, Z., (2011). Quantitative measurement of productivity loss due to thermal discomfort, Energy and Building, 43, 1057-1062.
9. Cui, W., Cao, G., Park, J.H., Ouyang, Q., & Zhu, Y., (2013). Influence of indoor air temperature on human thermal comfort, motivation and performance, Building and Environment, 68, 114-122.
10. Tham, K.W., & Willem, H.C. (2010). Room air temperature affects occupants’ physiology, perceptions and mental alertness, Building and Environment, 45, 40-44.
11. Tanabe, S.I., Nishiharad, N., & Hanedabc, M., (2007). Indoor Temperature, Productivity, and Fatigue in Office Tasks, HVAC&R Research, 13, 623-633.
12. Tanabe, S.I., Hanedabc, M., & Nishiharad, N. (2015). Workplace productivity and individual thermal satisfaction, Building and Environment, 91, 42-50.
13. Wargocki, P., & Porras-Salazara, J.A., Contreras-Espinoza, S., (2019) The relationship between classroom temperature and children’s performance in school, Building and Environment, 15, 197-204.
14. Nematchoua, M. K., Ricciardi, P., Orosa, J., Asdi, S., & Choudhary, R., (2019). Influence of indoor environmental quality on the self-estimated performance of office workers in the tropical wet and hot climate of Cameroon, Building Engineering, 21, 141-148.
15. Toftum, J, (2010) Central automatic control or distributed occupant control for better indoor environment quality in the future, Building and Environment, 45, 23-28.
16. Zhang, Y., Mai, J., Zhang, N., Wang, F., & Zhai, Y., (2017). Adaptation-based indoor environment control in a hot-humid aread, Building and Environment, 117, 238-247.
17. Liu, S., Yin, L., Ho, W. K., Ling, K. V., & Schiavon, S., (2017). A tracking cooling fan using geofence and camera-based indoor localization, Building and Environment, 114, 36-44
18. Osgood, C. E., May, W. H., & Miron, M. S., (1975). Cross-Cultural Universals of Affective Meaning. Urbana, IL: University of Illinois Press.