簡易檢索 / 詳目顯示

研究生: 宋營彰
Sung, Ying-Chang
論文名稱: 鑽石成核於濺鍍鎢與銅之蝕刻矽基板的研究
Diamond nucleation on etched silicon substrates sputtered with tungsten and copper
指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 73
中文關鍵詞: 鑽石成核成核於中間層成核於粗糙表面異質成核微波電漿化學氣象沉積
外文關鍵詞: diamond nucleation, interlayer driven nucleation, nucleation on rough surfaces, heterogeneous nucleation, microwave plasma chemical vapor deposition
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去鑽石成核的方法與技術很多,但大多需要鑽石種晶當作成核點。即便是成核在損毀的粗糙基板,也是用鑽石顆粒摩擦,或是藉由超音波震盪奈米鑽石溶液,讓鑽石顆粒在基板上製造凹凸不平的表面,並鑲嵌鑽石種晶在上面。然而,鑽石顆粒成本高且奈米鑽石溶液難以取得。本實驗初期使用濕蝕刻技術製造粗糙基板,搭配碳化物中間層,結合兩種鑽石成核技術與方法,使鑽石異質成核於基板。儘管鑽石只出現在容易形成碳化鎢的位置,也就是基板的是相對高處,導致成核密度低。過程中,發現鎢搭配金屬銅,讓石墨烯沉積於銅上,得以讓鑽石成核於鎢與石墨烯交界面。隨著製程時間拉長,鑽石薄膜逐漸擴張,覆蓋銅並延伸到鎢。於是後期,讓鎢、銅與石墨烯同時出現在粗糙基板,試圖讓鑽石成核於整塊基板,不受基板上地形與海拔高度的影響。石墨烯的沉積與鑽石的成核、成長,三道製程用微波電漿化學氣象沉積法一氣呵成,使得鑽石除了在山脊成核,地勢相對較低的山腰與山谷也可以發現鑽石的蹤跡。如此一來,鑽石成核密度便提升。

    關鍵字: 鑽石成核、成核於中間層、成核於粗糙表面、異質成核、微波電漿化學氣象沉積

    In the past, there were many methods and techniques for diamond nucleation, but most of them required diamond seed crystals as nucleation points. Even if the nucleation is on the damaged rough substrate, the diamond particles create rough surface on the substrate, and the diamond seed crystals are embedded on it. In the early stage of this experiment, the rough substrate was created using wet etching technology with a carbide intermediate layer to make diamonds heterogeneous nucleation on the substrate. During the process, it was discovered that tungsten and copper allow graphene to be deposited on allows diamonds to nucleate at the interface of tungsten and graphene grown on copper. As the process time lengthens, the diamond film gradually expands. In the later stage, tungsten, copper and graphene were allowed to appear on the rough substrate at the same time, trying to make the diamond nucleate on the whole substrate without being affected by the terrain and altitude on the substrate.

    Keywords: diamond nucleation, interlayer driven nucleation, nucleation on rough surfaces, heterogeneous nucleation, microwave plasma chemical vapor deposition

    學位考試合格證明書 I 摘要 II Abstract III 致謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 鑽石介紹 1 1.2.1 鑽石的特性與應用 3 1.2.1.1 光學特性與應用(Optical Properties & Applications) 3 1.2.1.2 導熱特性與應用(Thermal Properties & Applications) 4 1.2.1.3 電子特性與應用(Electronic Properties & Applications) 4 1.2.1.4 機械特性與應用(Mechanical Properties & Applications) 6 1.2.1.5 生物相容性與應用(Biocompatibility & Applications) 6 第二章 文獻回顧與理論基礎 7 2.1 不同尺度鑽石介紹與成長機制 7 2.1.1 微米鑽石薄膜(Microcrystalline Diamond Films, MCD Films) 8 2.1.2 奈米鑽石薄膜(Nanocrystalline Diamond Films, NCD Films) 9 2.1.3 超奈米鑽石薄膜(Ultrananocrystalline Diamond Films, UNCD Films) 10 2.2 鑽石薄膜成核於異質基板的技術與方法 12 2.2.1 靜電種晶法(Electrostatic seeding) 12 2.2.2 偏壓輔助成核(Bias enhanced nucleation) 14 2.2.3 化學成核(Chemical nucleation) 17 2.2.4 成核於損壞的基板表面(Nucleation through surface damage) 19 2.2.5 成核於中間層(Interlayer driven nucleation) 21 2.2.6 混合技術(Mixed technique) 23 2.2.7 普遍使用的技術比較(Comparison between commonly used techniques) 24 第三章 實驗流程與儀器介紹 25 3.1 實驗耗材 25 3.2 實驗流程圖 26 3.3 製程設備 27 3.3.1 基板蝕刻設備 27 3.3.1.1超音波清洗槽(Ultrasonic Steri-Cleaner) 27 3.3.1.2 電磁加熱攪拌器(Magnetic Stirrer Hotplate) 28 3.3.2 沉積鑽石與石墨烯設備 28 3.3.2.1 射頻磁控電漿濺鍍系統(RF Magnetron Sputtering System) 28 3.3.2.2 微波電漿化學氣相沉積系統(Microwave Plasma CVD) 30 3.3.2.3 熱化學氣相沉積系統(Thermal CVD) 32 3.4 製程監控設備與分析測量儀器 33 3.4.1雙波長光學溫度計(Dual Wavelength Pyrometer) 33 3.4.2 光放射光譜儀(Optical Emission Spectroscope, OES) 34 3.4.3 光學顯微鏡(Optical Microscope, OM) 35 3.4.4 拉曼光譜儀(Raman Spectroscope) 36 3.4.5 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 38 3.4.6 高解析掃描式電子顯微鏡(High Resolution Scanning Electron Microscope, HRSEM) 40 第四章 實驗結果與討論 41 4.1 在蝕刻基板鍍鎢後討論鑽石成核位置 41 4.1.1蝕刻基板 41 4.1.2 金屬濺鍍 42 4.1.3 MPCVD後鑽石成核的位置與原理討論 42 4.2 銅箔上製造鎢島後鑽石成核的位置 51 4.2.1 基板的製備 51 4.2.2 沉積石墨烯 52 4.2.3 MPCVD後鑽石成核的位置與原理討論 54 4.3 在蝕刻基板鍍鎢與銅後討論鑽石成核位置的變化 59 4.3.1 基板的製備 59 4.3.2 MPCVD後鑽石成核的位置與原理討論 59 第五章 結論與未來展望 68 第六章 參考文獻 69

    1. Bundy, F.P., et al., Man-Made Diamonds. Nature, 1955. 176(4471): p. 51-55.
    2. Eversole, W., US patents 3,030,187, 3,030,188, filed July 23, 1958, issued April 17, 1962. Canadian patent, 1961. 628.
    3. Spitsyn, B., L. Bouilov, and B. Derjaguin, Vapor growth of diamond on diamond and other surfaces. Journal of Crystal Growth, 1981. 52: p. 219-226.
    4. Angus, J.C., Diamond synthesis by chemical vapor deposition: The early years. Diamond and related materials, 2014. 49: p. 77-86.
    5. Oganov, A.R., et al., Structure, Bonding, and Mineralogy of Carbon at Extreme Conditions, in Carbon in Earth, R.M. Hazen, A.P. Jones, and J.A. Baross, Editors. 2013, Mineralogical Soc Amer & Geochemical Soc: Chantilly. p. 47-77.
    6. http://gisaxs.com/index.php/File:Diamond00.png.
    7. Gielisse, P., Handbook of Industrial Diamonds and Diamond Films, edited by MA Prelas, G. Popovici, and LK Bigelow. 1998, Marcel Dekker Inc., New York.
    8. Clausing, R.E., et al., Diamond and diamond-like films and coatings. Vol. 266. 2012: Springer Science & Business Media.
    9. Ho, C.Y., R.W. Powell, and P.E. Liley, Thermal conductivity of the elements. Journal of Physical and Chemical Reference Data, 1972. 1(2): p. 279-421.
    10. Hayward, I., Friction and wear properties of diamonds and diamond coatings. Surface and coatings technology, 1991. 49(1-3): p. 554-559.
    11. Larsson, K. and Y. Tian, Effect of surface termination on the reactivity of nano-sized diamond particle surfaces for bio applications. Carbon, 2018. 134: p. 244-254.
    12. Gicquel, A., et al., CVD diamond films: from growth to applications. Current Applied Physics, 2001. 1(6): p. 479-496.
    13. Jacobson, P. and S. Stoupin, Thermal expansion coefficient of diamond in a wide temperature range. Diamond and Related Materials, 2019. 97: p. 107469.
    14. Bhagavantam, S. and D.A.A.S. Narayana Rao, Dielectric Constant of Diamond. Nature, 1948. 161(4097): p. 729-729.
    15. Wort, C.J. and R.S. Balmer, Diamond as an electronic material. Materials today, 2008. 11(1-2): p. 22-28.
    16. Pan, L.S. and D.R. Kania, Diamond: electronic properties and applications. 2013: Springer Science & Business Media.
    17. Klein, C.A. and G.F. Cardinale, Young's modulus and Poisson's ratio of CVD diamond. Diamond and Related Materials, 1993. 2(5-7): p. 918-923.
    18. Gielisse, P., Diamond and Diamond-Like Film Applications. 1998: CRC Press.
    19. Härtl, A., et al., Protein-modified nanocrystalline diamond thin films for biosensor applications. Nature materials, 2004. 3(10): p. 736-742.
    20. Kwok, S.C., J. Wang, and P.K. Chu, Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films. Diamond and Related Materials, 2005. 14(1): p. 78-85.
    21. Yang, W., et al., DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nature materials, 2002. 1(4): p. 253-257.
    22. Szunerits, S., C.E. Nebel, and R.J. Hamers, Surface functionalization and biological applications of CVD diamond. MRS Bulletin, 2014. 39(6): p. 517-524.
    23. Vavilov, V.S., The properties of natural and synthetic diamond. 1993, IOP Publishing.
    24. Prelas, M.A., G. Popovici, and L.K. Bigelow, Handbook of industrial diamonds and diamond films. 2018: Routledge.
    25. Joseph, P., et al., Transparent ultrananocrystalline diamond films on quartz substrate. Diamond and related materials, 2008. 17(4-5): p. 476-480.
    26. Tang, C., et al., Synthesis and structural characterization of highly< 1 0 0>-oriented {1 0 0}-faceted nanocrystalline diamond films by microwave plasma chemical vapor deposition. Journal of crystal growth, 2009. 311(8): p. 2258-2264.
    27. May, P.W., Diamond thin films: a 21st-century material. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2000. 358(1766): p. 473-495.
    28. Tang, C., et al., A new regime for high rate growth of nanocrystalline diamond films using high power and CH4/H2/N2/O2 plasma. Diamond and related materials, 2011. 20(3): p. 304-309.
    29. Tang, Y., et al., Study of nanocrystalline diamond synthesis in MPCVD by bias enhanced nucleation and growth. Diamond and related materials, 2012. 25: p. 87-91.
    30. Wang, T., et al., Deposition of diamond/β-SiC composite gradient films by HFCVD: A competitive growth process. Diamond and related materials, 2014. 42: p. 41-48.
    31. Naguib, N.N., et al., Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers. Chemical Physics Letters, 2006. 430(4-6): p. 345-350.
    32. Krauss, A., et al., Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diamond and Related Materials, 2001. 10(11): p. 1952-1961.
    33. Gruen, D.M., Nanocrystalline diamond films. Annual Review of Materials Science, 1999. 29(1): p. 211-259.
    34. Sumant, A.V., et al., Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond. Advanced Materials, 2005. 17(8): p. 1039-1045.
    35. Gerbi, J., et al., Macrotexture and growth chemistry in ultrananocrystalline diamond thin films. Thin Solid Films, 2005. 473(1): p. 41-48.
    36. Lin, C.-R., et al., Improvement on the synthesis technique of ultrananocrystalline diamond films by using microwave plasma jet chemical vapor deposition. Journal of crystal growth, 2011. 326(1): p. 212-217.
    37. Chu, Y.-C., et al., Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer. Journal of Applied Physics, 2012. 111(12): p. 124328.
    38. Das, D. and R. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films. International Materials Reviews, 2007. 52(1): p. 29-64.
    39. Gruen, D.M., et al., Carbon dimer, C2, as a growth species for diamond films from methane/hydrogen/argon microwave plasmas. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995. 13(3): p. 1628-1632.
    40. Harkins, W.D., Energy relations of the surface of solids I. Surface energy of the diamond. The Journal of Chemical Physics, 1942. 10(5): p. 268-272.
    41. Ohtsuka, K., et al., Epitaxial growth of diamond on iridium. Japanese journal of applied physics, 1996. 35(8B): p. L1072.
    42. Schreck, M., et al., Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Scientific reports, 2017. 7(1): p. 1-8.
    43. Jaccodine, R., Surface energy of germanium and silicon. Journal of the electrochemical society, 1963. 110(6): p. 524.
    44. Gebbie, M.A., et al., Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features. Proceedings of the National Academy of Sciences, 2018. 115(33): p. 8284-8289.
    45. Henry, D., Electrokinetic flow in ultrafine capillary slits. Proc. R. Soc. London Ser, 1931. 133(821): p. 106-129.
    46. Booth, F., The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950. 203(1075): p. 514-533.
    47. Hees, J., A. Kriele, and O.A. Williams, Electrostatic self-assembly of diamond nanoparticles. Chemical Physics Letters, 2011. 509(1-3): p. 12-15.
    48. Ozawa, M., et al., Preparation and behavior of brownish, clear nanodiamond colloids. Advanced Materials, 2007. 19(9): p. 1201-1206.
    49. Mandal, S., et al., Thick, adherent diamond films on AlN with low thermal barrier resistance. ACS applied materials & interfaces, 2019. 11(43): p. 40826-40834.
    50. Yugo, S., T, Kanai. T. Kimura and T. Muto. Appl. Phys. Let1, 1991. 58: p. 1036.
    51. Yugo, S., T. Kanai, and T. Kimura, A new method for the generation of diamond nuclei by plasma CVD. Diamond and Related Materials, 1992. 1(2-4): p. 388-391.
    52. Lifshitz, Y., S. Kasi, and J. Rabalais, Subplantation model for film growth from hyperthermal species: Application to diamond. Physical review letters, 1989. 62(11): p. 1290.
    53. Yugo, S., T. Kimura, and T. Kanai, Nucleation mechanisms of diamond in plasma chemical vapor deposition. Diamond and Related Materials, 1993. 2(2-4): p. 328-332.
    54. Lifshitz, Y., et al., The mechanism of diamond nucleation from energetic species. Science, 2002. 297(5586): p. 1531-1533.
    55. Mandal, S., Nucleation of diamond films on heterogeneous substrates: a review. RSC Advances, 2021. 11(17): p. 10159-10182.
    56. Tiwari, R.N. and L. Chang, Growth, microstructure, and field-emission properties of synthesized diamond film on adamantane-coated silicon substrate by microwave plasma chemical vapor deposition. Journal of Applied Physics, 2010. 107(10): p. 103305.
    57. Tiwari, R.N., J.N. Tiwari, and L. Chang, The synthesis of diamond films on adamantane-coated Si substrate at low temperature. Chemical Engineering Journal, 2010. 158(3): p. 641-645.
    58. Wang, Y., et al., Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3. Applied physics express, 2010. 3(3): p. 031101.
    59. Ascarelli, P. and S. Fontana, Dissimilar grit-size dependence of the diamond nucleation density on substrate surface pretreatments. Applied surface science, 1993. 64(4): p. 307-311.
    60. Schweitz, K.O., R.B. Schou-Jensen, and S.S. Eskildsen, Ultrasonic pre-treatment for enhanced diamond nucleation. Diamond and related materials, 1996. 5(3-5): p. 206-210.
    61. Ravi, K. and C. Koch, Nucleation enhancement of diamond synthesized by combustion flame techniques. Applied physics letters, 1990. 57(4): p. 348-350.
    62. Singh, J., Nucleation and growth mechanism of diamond during hot-filament chemical vapour deposition. Journal of materials science, 1994. 29(10): p. 2761-2766.
    63. Joffreau, P.-O., R. Haubner, and B. Lux, Low-pressure diamond growth on refractory metals. Int. J. Refract. Hard Met., 1988. 7(4): p. 186-194.
    64. Lindlbauer, A., R. Haubner, and B. Lux, Effects of microwave plasma deposition parameters on diamond coating formation on SiAlON substrates. International Journal of Refractory Metals and Hard Materials, 1992. 11(4): p. 247-258.
    65. Philip, J., et al., Elastic, mechanical, and thermal properties of nanocrystalline diamond films. Journal of Applied Physics, 2003. 93(4): p. 2164-2171.
    66. Wang, L., et al., [100]-textured growth of polycrystalline diamond films on alumina substrates by microwave plasma chemical vapor deposition. Materials Letters, 2006. 60(19): p. 2390-2394.
    67. Mukherjee, D., et al., Deposition of diamond films on single crystalline silicon carbide substrates. Diamond and Related Materials, 2020. 101: p. 107625.
    68. Barnes, P.N. and R.L. Wu, Nucleation enhancement of diamond with amorphous films. Applied physics letters, 1993. 62(1): p. 37-39.
    69. Morrish, A. and P.E. Pehrsson, Effects of surface pretreatments on nucleation and growth of diamond films on a variety of substrates. Applied physics letters, 1991. 59(4): p. 417-419.
    70. Chen, L.-J., et al., Effects of tungsten metal coatings on enhancing the characteristics of ultrananocrystalline diamond films. The Journal of Physical Chemistry C, 2008. 112(10): p. 3759-3765.
    71. Kamo, M., et al., Growth of diamond on single crystals of tungsten carbide in microwave plasma. Materials Science and Engineering: A, 1988. 105: p. 535-541.
    72. Fang, L., et al., Growth of graphene on Cu foils by microwave plasma chemical vapor deposition: The effect of in-situ hydrogen plasma post-treatment. Applied Surface Science, 2016. 383: p. 28-32.

    無法下載圖示 校內:2026-06-28公開
    校外:2026-06-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE