| 研究生: |
陳玟伶 Chen, Wen-Ling |
|---|---|
| 論文名稱: |
以聚乳酸/甘醇酸支架結合內皮前驅細胞應用於兔子之骨軟骨再生 Osteochondral regeneration by combining PLGA scaffolding and endothelial progenitor cells in rabbits |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 內皮前驅細胞 、聚乳酸甘醇酸 、支架 、骨軟骨再生 |
| 外文關鍵詞: | endothelial progenitor cells (EPCs), Poly-lactic-glycolic acid (PLGA) scaffold, osteochondral regeneration |
| 相關次數: | 點閱:201 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多學者與臨床研究已針對骨軟骨修復的治療做許多研究,但治療結果往往形成纖維性組織。本研究探討內皮前驅細胞是否能如實驗假設,藉由內皮前驅細胞增進血管新生並且促進骨軟骨修復。聚乳酸甘醇支架除了能提供受損組織暫時性的力學支撐,其孔洞性構造還能提供內皮前驅細胞貼附的空間。本研究在兔子股骨內上髁(medial femoral condyle)處製造直徑3mm、深3mm圓柱狀的骨軟骨缺陷,在此模型架構下分別比較下列三組實驗在4周與12周後的結果: 結合內皮前驅細胞貼附於聚乳酸甘醇支架組、僅植入聚乳酸甘醇支架組與缺陷組。
4周後病理切片與免疫組織化學染色結果中MMP-13, TGFβ2, 與 TGFβ-3的表現顯示內皮前驅細胞確實在早期骨軟骨修復期間提供了一個較佳的環境。在這樣穩定的復原環境下,結合內皮前驅細胞貼附於聚乳酸甘醇支架組的修復組織型態最終接近於正常骨軟骨,而僅植入聚乳酸甘醇支架組和缺陷組則趨向纖維化組織的結果。本研究以micro-CT觀察組織中骨質密度比例來判斷骨組織修復的結果,其結合內皮前驅細胞貼附於聚乳酸甘醇支架組在12周的結果不僅都高於僅植入聚乳酸甘醇支架組與缺陷組,而且還接近於正常骨組織的骨質密度比例。各實驗組於12周的骨小梁厚度不但明顯高於4周的結果,還高過正常骨組織的骨小量厚度。綜合各組於12周時骨質密度比例和骨小梁厚度的資料顯示骨軟骨缺陷處仍處於修復狀態,所以在後續的研究中將會進行更長時間的觀察。
總體而言,本研究成功地利用內皮細胞貼附於聚乳酸甘醇支架來修復骨軟骨缺損,為一前瞻性修復骨軟骨組織再生的方法。
Treatments for osteochondral lesions have been worldly explored but most outcomes resulted in fibrous tissue regeneration. In our study, we investigated whether endothelial progenitor cells (EPCs) not only increase angiogenesis and but also promote osteogenesis and chondrogenesis as hypothesized. Poly-lactic-glycolic acid (PLGA) scaffold was designed to provide temporary mechanical support in the early recovery and keep implanted autologous EPCs as a carrier during implantation. In this study, a defect hole of 3mm in diameter and 3mm in depth was created on the medial femoral condyle of the rabbit. EPCs seeded PLGA scaffold (EPC-PLGA group) were implanted and compared with PLGA scaffold (PLGA group) implantation and empty defect (ED group) with no treatments in this rabbit model.
Histological results at 4 weeks showed that the presence of EPCs do speed up the early recovery with a better microenvironment containing more cytokines such as MMP-13, TGFβ2, and TGFβ-3 confirmed by immunohistochemical staining. Within the stable development, the osteochondral regenerative regions in EPC-PLGA group present similar compositions and morphologies as normal articular cartilage while ED group and PLGA group present fibrous-tissue-like results. Bone volume/tissue volume (BV/TV) ratio obtained by micro-CT of EPC-PLGA group is higher than ED group and PLGA group at 12 weeks. In particular the BV/TV ratio in EPC-PLGA group is similar to the Sham group. The thickness of trabecular bone (Tb.Th) was obviously higher from 4 week time point to 12 week time point, quantified values of all groups at 12 weeks are higher than the Sham group which demonstrate the regenerative regions were still under recovery and longer time of observation are needed in the future study.
In summary, this study successfully proposes a promising solution for osteochondral regeneration by implanting EPC-PLGA scaffold.
1. Roughley, P.J. and E.R. Lee, Cartilage proteoglycans: structure and potential functions. Microsc Res Tech, 1994. 28(5): p. 385-97.
2. Eyre, D., Collagen of articular cartilage. Arthritis Res, 2002. 4(1): p. 30-5.
3. Mason, J.M., et al., Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop Relat Res, 2000(379): p. S171-S178.
4. Cahill, B.R., Current concepts review. Osteochondritis dissecans. J Bone Joint Surg Am, 1997. 79(3): p. 471-2.
5. Kocher, M.S., et al., Management of osteochondritis dissecans of the knee: current concepts review. Am J Sports Med, 2006. 34(7): p. 1181-91.
6. Fransen, M., J. Crosbie, and J. Edmonds, Physical therapy is effective for patients with osteoarthritis of the knee: a randomized controlled clinical trial. Journal of Rheumatology, 2001. 28(1): p. 156-164.
7. Deyle, G.D., et al., Physical therapy treatment effectiveness for osteoarthritis of the knee: A randomized comparison of supervised clinical exercise and manual therapy procedures versus a home exercise program. Physical Therapy, 2005. 85(12): p. 1301-1317.
8. Fisher, N.M., et al., Quantitative Effects of Physical Therapy on Muscular and Functional Performance in Subjects with Osteoarthritis of the Knees. Archives of Physical Medicine and Rehabilitation, 1993. 74(8): p. 840-847.
9. Van Baar, M.E., et al., The effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee: A randomized clinical trial. Journal of Rheumatology, 1998. 25(12): p. 2432-2439.
10. Ausiello, J.C. and R.S. Stafford, Trends in medication use for osteoarthritis treatment. Journal of Rheumatology, 2002. 29(5): p. 999-1005.
11. Lawson, B., et al., Managing osteoarthritis - Medication use among seniors in the community. Canadian Family Physician, 2004. 50: p. 1664-1670.
12. Clegg, D.O., et al., Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. New England Journal of Medicine, 2006. 354(8): p. 795-808.
13. Chevalier, X., et al., Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: A multicenter study. Journal of Rheumatology, 2005. 32(7): p. 1317-1323.
14. Ravaud, P., et al., Effects of joint lavage and steroid injection in patients with osteoarthritis of the knee - Results of a multicenter, randomized, controlled trial. Arthritis Rheum, 1999. 42(3): p. 475-482.
15. Lo, G.H., et al., Intra-articular hyaluronic acid in treatment of knee osteoarthritis - A meta-analysis. Jama-Journal of the American Medical Association, 2003. 290(23): p. 3115-3121.
16. Goa, K.L. and P. Benfield, Hyaluronic-Acid - a Review of Its Pharmacology and Use as a Surgical Aid in Ophthalmology, and Its Therapeutic Potential in Joint Disease and Wound-Healing. Drugs, 1994. 47(3): p. 536-566.
17. Ruano-Ravina, A. and M. Jato Diaz, Autologous chondrocyte implantation: a systematic review. Osteoarthritis Cartilage, 2006. 14(1): p. 47-51.
18. Matsusue, Y., T. Yamamuro, and H. Hama, Arthroscopic Multiple Osteochondral Transplantation to the Chondral Defect in the Knee Associated with Anterior Cruciate Ligament Disruption. Arthroscopy, 1993. 9(3): p. 318-321.
19. Smith, G.D., G. Knutsen, and J.B. Richardson, A clinical review of cartilage repair techniques. J Bone Joint Surg Br, 2005. 87(4): p. 445-9.
20. Kreuz, P.C., et al., Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis and Cartilage, 2006. 14(11): p. 1119-1125.
21. Mithoefer, K., et al., Clinical Efficacy of the Microfracture Technique for Articular Cartilage Repair in the Knee An Evidence-Based Systematic Analysis. American Journal of Sports Medicine, 2009. 37(10): p. 2053-2063.
22. Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-43.
23. Temenoff, J.S. and A.G. Mikos, Review: tissue engineering for regeneration of articular cartilage. Biomaterials, 2000. 21(5): p. 431-40.
24. Cancedda, R., et al., Tissue engineering and cell therapy of cartilage and bone. Matrix Biol, 2003. 22(1): p. 81-91.
25. Lovett, M., et al., Vascularization strategies for tissue engineering. Tissue Eng Part B Rev, 2009. 15(3): p. 353-70.
26. Novosel, E.C., C. Kleinhans, and P.J. Kluger, Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev, 2011. 63(4-5): p. 300-11.
27. Asahara, T., et al., Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res, 1999. 85(3): p. 221-8.
28. Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997. 275(5302): p. 964-7.
29. Takahashi, T., et al., Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med, 1999. 5(4): p. 434-8.
30. Lam, C.F., et al., Autologous transplantation of endothelial progenitor cells attenuates acute lung injury in rabbits. Anesthesiology, 2008. 108(3): p. 392-401.
31. Matsumoto, T., et al., Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone, 2008. 43(3): p. 434-9.
32. Chang, N.J., et al., The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials, 2012. 33(11): p. 3153-63.
33. He, T., et al., Angiogenic function of prostacyclin biosynthesis in human endothelial progenitor cells. Circ Res, 2008. 103(1): p. 80-8.
34. Wayne, J.S., et al., In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng, 2005. 11(5-6): p. 953-63.
35. Mainil-Varlet, P., et al., Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am, 2003. 85-A Suppl 2: p. 45-57.
36. Holland, T.A., et al., Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthritis and Cartilage, 2007. 15(2): p. 187-197.
37. Riddick, T.L., K. Duesterdieck-Zellmer, and S.A. Semevolos, Gene and protein expression of cartilage canal and osteochondral junction chondrocytes and full-thickness cartilage in early equine osteochondrosis. Vet J, 2012.
38. Lin, Y., et al., Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest, 2000. 105(1): p. 71-7.
39. Hur, J., et al., Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis Thrombosis and Vascular Biology, 2004. 24(2): p. 288-293.
40. Mukai, N., et al., A comparison of the tube forming potentials of early and late endothelial progenitor cells. Experimental Cell Research, 2008. 314(3): p. 430-440.
41. Shive, M.S. and J.M. Anderson, Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev, 1997. 28(1): p. 5-24.
42. Krampera, M., et al., Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 2006. 39(4): p. 678-683.
43. Uematsu, K., et al., Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials, 2005. 26(20): p. 4273-4279.
44. Lee, C.H., et al., Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet, 2010. 376(9739): p. 440-8.
45. Mendelson, A., et al., Chondrogenesis by chemotactic homing of synovium, bone marrow, and adipose stem cells in vitro. FASEB J, 2011. 25(10): p. 3496-504.
46. Bianco, P., et al., Bone formation via cartilage models: the "borderline" chondrocyte. Matrix Biol, 1998. 17(3): p. 185-92.
47. Kneser, U., et al., Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices. J Biomed Mater Res, 1999. 47(4): p. 494-503.
48. Atesok, K., et al., An emerging cell-based strategy in orthopaedics: endothelial progenitor cells. Knee Surg Sports Traumatol Arthrosc, 2012.
49. Asahara, T., A. Kawamoto, and H. Masuda, Concise review: Circulating endothelial progenitor cells for vascular medicine. Stem Cells, 2011. 29(11): p. 1650-5.
50. Matsumoto, T., et al., Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol, 2006. 169(4): p. 1440-57.
51. Das, A. and E. Botchwey, Evaluation of angiogenesis and osteogenesis. Tissue Eng Part B Rev, 2011. 17(6): p. 403-14.
52. Matsuyama, J., et al., Osteogenesis and angiogenesis in regenerating bone during transverse distraction: quantitative evaluation using a canine model. Clin Orthop Relat Res, 2005(433): p. 243-50.
53. Caplan, A.I., Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics. Tissue Eng, 2005. 11(7-8): p. 1198-1211.
54. Chimal-Monroy, J. and L. Diaz de Leon, Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells. Int J Dev Biol, 1997. 41(1): p. 91-102.
55. Wang, W.G., et al., In vitro chondrogenesis of human bone marrow-derived mesenchymal progenitor cells in monolayer culture: activation by transfection with TGF-beta 2. Tissue & Cell, 2003. 35(1): p. 69-77.
56. Ito, M., et al., Contribution of trabecular and cortical components to the mechanical properties of bone and their regulating parameters. Bone, 2002. 31(3): p. 351-358.
57. Ulrich, D., et al., Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech, 1998. 31(12): p. 1187-1192.