| 研究生: |
李世忠 Lee, Shih-Chung |
|---|---|
| 論文名稱: |
具漂移干擾的半導體製程網路之最佳派遣策略 The Optimal Dispatching Policies for Multi-Product Semiconductor Manufacturing Networks with Drifting Disturbances |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 半導體製造 、等候理論 、派遣策略 、排程控制 、Double-EWMA 、混整數非線性規劃 、數值模擬 |
| 外文關鍵詞: | semiconductor manufacturing, queuing theory, dispatching policy, dispatching control, Double-EWMA, MINLP, numerical simulation |
| 相關次數: | 點閱:139 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體工業為一個技術導向且資本密集的產業,隨著尺寸逐步縮小與晶圓半徑增大,生產者對於每一機台必須採用精密的逐批控制方法提升產品良率和製造的效率。在本研究中我們將半導體製造程序視為多種產品、多階段的M/M/1/K機台的等候系統網路,因此除了前述機台的逐批控制以外,而須考慮三個網路控制問題,路徑指派(Routing)、進入許可(Admission)與處理排程(Scheduling),來提高產品品質及生產效率,此外我們假設機台的干擾存在漂移現象,推導出Double-EWMA逐批控制下以干擾為白雜訊過程的變異數計算公式,並驗證出排程控制議題的確影響產品品質。根據這些假設我們推導出混整數非線性規劃模型來決定可達成的最小化系統時間以及最大化製程能力的網路控制策略,並利用數值模擬方法驗證此派遣模式的合理性。
Semiconductor manufacturing industry is a technology and capital-intensive industry. As feature sizes shrink and wafer sizes increase, the manufacture should use intricate run-by-run control methods to improve the product quality and tools utilization of any production facility. In this thesis, the semiconductor manufacturing process is treated as multiple product input and multiple M/M/1/K queuing systems operating network. Thus, other than the run-by-run control, product quality and efficiency can be improved by the three dispatching controls in queuing network: Routing, Admission and Scheduling. It is assumed that drift noise phenomena exist in machine disturbances, the variance computation equation for white noise production process has been derived under Double-EWMA run-by-run control.Forthermore, it has been verified that the product quality is indeed influence by dispatching control. Based on these assumptions, a mixed integer nonlinear programming model (MINLP) is formulated to determine the optimal dispatching policies for maximizing process capability or minimizing average system time. Numerical simulation procedure is also devised to confirm the validity of the resulting dispatching model.
Ai, B. Private Communications, Huazhong University of Science and Technology, Wuhan, China, 2009.
Blackstone, J. H., Phillips, D. T. & Hogg, G. L. A state-of-the-art survey of dispatching rules for manufacturing job shop operations. Int. J. Prod. Res., 20, 27–45, 1982.
Bhaskaran, K. & Pinedo, M. In Handbook of Industrial Engineering, edited by G. Salvendy. John Wiley, New York, 1992.
Box, G. E. P., Jenkins, G. M. & Reinsel, G. Time Series Analysis Forecasting And Control(3rd Ed.). Prentice-Hall, 1994
Bolch, G., Greiner, S., Meer, H., Trivedi, K. S. Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. WILEY-INTERSCIENCE, 2006.
Baez Senties, O., Azzaro-Pantel, C., Pibouleau, L. & Domenech, S. Multiobjective scheduling for semiconductor manufacturing plants. Comput. Chem. Eng. vol. 34, 555–566, 2010.
Cassandras, C. G. & Lafortune, S. Introduction To Discrete Event System. Kluwer Academic. 1999.
Choi J. Y. & Reveliotis, S. Relative value function approximation for the capacitated re-entrant line scheduling problem. IEEE Trans. Autom. Sci. Eng., vol. 2, no. 3, pp. 285–299, Jul. 2005.
Dabbas, R. M., Chen, H. N. & Fowler J. W. et al., A combined dispatching criteria approach to scheduling semiconductor manufacturing systems. Comput. Ind. Eng., vol. 39, no. 3–4, pp. 307–324, Apr. 2001.
Del Castillo, E., Statistical Process Adjustment for Quality Control. John-Wiley & Sons. New York, 2002.
Dabbas, R. M. & Fowler, J. W. A new scheduling approach using combined dispatching criteria in wafer fabs. IEEE Trans. Semiconduct. Manufact., vol. 16, no. 3, pp. 501–510, Aug. 2003.
Firth, S. K., Campbell, W. J., Toprac, A. & Edgar, T. F. Just-in-time adaptive disturbance estimation for run-to-run control of semiconductor processes. IEEE Trans. Semicond. Manuf. vol. 19, 298–315, 2006.
Kutanoglu, E. & Sabuncuoglu, I. An analysis of heuristics in a dynamic job shop with weighted tardiness objectives. Int. J. Prod. Res., 37, 165–187, 1999.
Ko, H. H., Kim, J., Kim, S. S. & Baek, J. G.. Dispatching rule for non-identical parallel machine with sequence-dependent setups and quality restrictions. Comput. Ind. Eng. 59, 448–457, 2010.
Lee, R. Uzsoy, C. & Martin-Vega, L. A review of production planning and scheduling models in the semiconductor industry, part II: Shop floor control. IIE Trans. Scheduling Logistics, vol. 26, no. 5, pp. 44–55, Sept. 1994.
Lee, Y. H. & Kim, T. Manufacturing cycle time reduction using balance control in the semiconductor fabrication line. Production Planning Control, vol. 13, no. 6, pp. 529–540, Sept. 2002.
Mittler, M. & Schoemig, A. K. Comparison of dispatching rules for semiconductor manufacturing using large facility model. in Proc. 1999 Winter Simulation Conf., Phoenix, AZ, pp. 709–713, 1999.
Morrison, J., Janakiram, M. & Kumar, P. R. A comparative study of scheduling policies at Motorola fabs, in Proceedings of the International Conference on Semiconductor Manufacturing Operational Modeling and Simulation. San Francisco, pp. 51–56, 1999.
Moyne, J. Run-to-Run Control in Semiconductor Manufacturing. CRC Press, Florida, 2001.
May, G. S. & Spanos, C. J. Fundamentals Of Semiconductor Manufacturing And Process Control. John Wiley & Sons. 2006.
Ma, M. D., Chang, C. C., Wong, D. S. H.& Jang, S. S. Identification of tool and product effects in a mixed product and parallel tool environment. Journal of Process Control. 2008.
Olkin, Ingram., Gleser, Leon J. & Derman, Cyrus., Probability Models And Applications. New York, 1980.
Patel, N. S. & Jenkins, S. T. Adaptive optimization of run-to-run controllers: the EWMA example. IEEE Trans. Semicond. Manuf., vol. 13, pp. 97–107, 2000.
Pasadyn, A. J. & Edgar, T. F., Observability and state estimation for multiple product control in semiconductor manufacturing. IEEE Trans. Semicond. Manuf. vol. 18, 592–604, 2005.
Pierce, N. G. & Yurtsever, T. Dynamic dispatch and graphical monitoring system, in Proceedings of the International Conference on Semiconductor Manufacturing Operational Modeling and Simulation, San Francisco., pp. 57–61, 1999.
Qu, P. & Mason, S. J. Metaheuristic scheduling of 300-mm lots containing multiple orders. IEEE Trans. Semiconduct. Manufact., vol. 18, no. 4, pp. 633–643, Nov. 2005.
Raghu, T. S. & Rajendran, C. An efficient dynamic dispatching rule for scheduling in a job shop. Int. J. Prod. Econ., 32, 301–313, 1993.
Rajendran, C. & Holthaus, O. A comparative study of dispatching rules in dynamic flowshops and jobshops. Eur. J. Op. Res., 116, 156–170, 1999.
Sachs, E., Hu, A. & Ingolfsson, A. Run by run process control: combining SPC and feedback control, IEEE Trans. Semicont. Manuf., vol. 8, pp. 26–43, 1995.
Smith, T. H. & Boning, D. S. Artificial neural network exponentially weighted moving average controller for semiconductor processes, J. Vacuum Science Tech., vol. 15, pp. 236–239, 1997.
Tseng, S. T., Yeh, A. B., Tsung, F. & Chan, Y. Y. A study of variable EWMA controller. IEEE Trans. Semicond. Manuf., vol. 16, pp. 633–643, 2003.
Wang, Zuntong., Wu, Qidi. & Qiao, Fei. A Lot Dispatching Strategy Integrating WIP Management and Wafer Start Control. IEEE Trans. Autom. Sci. Eng., vol. 4, no. 4, pp. 579–583, Jul. 2007.
Wang, M. H. Quasi Internal Model Control Design for Run-to-Run Processes with Unknown Time-Variant Gains. M.S. Thesis, Chemical Engineering, Cheng Kung University, June 2011.
Wein, L. M. Scheduling semiconductor wafer fabrication. IEEE Trans. On Semiconductor Manufacturing. vol. 1, no. 3, pp. 115–130, Aug. 1988.
Wu, M. F., Lin, W. K., Ho, C. L., Wong, D. S. H., Jang, S. S., Zheng, Y. & Jain, A. A Feed-Forward/Feedback Run-to-Run Control of a Mixed Product Process: Simulation and Experimental Studies. Ind. Eng. Chem. Res. 46, 6963–6970, 2007.
Wu, M. F., Lin, C. H., Wong, D. S. H., Jang, S. S. & Tseng, S. S. Performance Analysis of EWMA Controllers Subject to Metrology Delay. IEEE Trans. On Semiconductor Manufacturing. vol. 21, no. 3, pp. 413–425, Aug. 2008.
Wu, K. J. Optimal Dispatching Policies for Semiconductor Manufacturing Networks with Multiple Products and Finite Storage Capacities. M.S. Thesis, Chemical Engineering, Cheng Kung University, July 2011.
Zheng, Y., Lin, Q. H., Wong, D. S. H., Jang, S. S. & Hui, K. Stability and performance analysis of mixed product run-to-run control. J. Process. Control 16, 431–443, 2006.