簡易檢索 / 詳目顯示

研究生: 李世忠
Lee, Shih-Chung
論文名稱: 具漂移干擾的半導體製程網路之最佳派遣策略
The Optimal Dispatching Policies for Multi-Product Semiconductor Manufacturing Networks with Drifting Disturbances
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 160
中文關鍵詞: 半導體製造等候理論派遣策略排程控制Double-EWMA混整數非線性規劃數值模擬
外文關鍵詞: semiconductor manufacturing, queuing theory, dispatching policy, dispatching control, Double-EWMA, MINLP, numerical simulation
相關次數: 點閱:139下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體工業為一個技術導向且資本密集的產業,隨著尺寸逐步縮小與晶圓半徑增大,生產者對於每一機台必須採用精密的逐批控制方法提升產品良率和製造的效率。在本研究中我們將半導體製造程序視為多種產品、多階段的M/M/1/K機台的等候系統網路,因此除了前述機台的逐批控制以外,而須考慮三個網路控制問題,路徑指派(Routing)、進入許可(Admission)與處理排程(Scheduling),來提高產品品質及生產效率,此外我們假設機台的干擾存在漂移現象,推導出Double-EWMA逐批控制下以干擾為白雜訊過程的變異數計算公式,並驗證出排程控制議題的確影響產品品質。根據這些假設我們推導出混整數非線性規劃模型來決定可達成的最小化系統時間以及最大化製程能力的網路控制策略,並利用數值模擬方法驗證此派遣模式的合理性。

    Semiconductor manufacturing industry is a technology and capital-intensive industry. As feature sizes shrink and wafer sizes increase, the manufacture should use intricate run-by-run control methods to improve the product quality and tools utilization of any production facility. In this thesis, the semiconductor manufacturing process is treated as multiple product input and multiple M/M/1/K queuing systems operating network. Thus, other than the run-by-run control, product quality and efficiency can be improved by the three dispatching controls in queuing network: Routing, Admission and Scheduling. It is assumed that drift noise phenomena exist in machine disturbances, the variance computation equation for white noise production process has been derived under Double-EWMA run-by-run control.Forthermore, it has been verified that the product quality is indeed influence by dispatching control. Based on these assumptions, a mixed integer nonlinear programming model (MINLP) is formulated to determine the optimal dispatching policies for maximizing process capability or minimizing average system time. Numerical simulation procedure is also devised to confirm the validity of the resulting dispatching model.

    中文摘要 I Abstract II 誌謝 III 表目錄 VIII 圖目錄 XI 符號表 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究目的 3 1.4 論文組織架構 3 第二章 半導體製程派遣模式 4 2.1 等候系統 4 2.2 性能指標(performance measure) 12 2.3 里陶定律( ) 15 2.4 M/M/1/K 等候系統 19 2.5 等候網路的控制 24 2.5.1 進入許可(admission) 26 2.5.2 路徑指派(routing) 26 2.5.3 處理排程(scheduling) 27 2.6 等候網路系統 28 2.6.1 單一產品系統 28 2.6.2 多產品系統 31 2.7 多階段多產品M/M/1/K等候網路系統 32 第三章 半導體製程的逐批控制策略 36 3.1 線性濾波器(linear filter) 36 3.2 積分移動平均(integrated moving average, IMA)模型 38 3.3 單一變數的逐批控制策略 41 3.3.1 EWMA控制 42 3.3.2 Double-EWMA控制 44 3.4 控制品質 46 3.4.1 EWMA控制品質 47 3.4.2 Double-EWMA 控制品質 51 3.5製造程序品質 58 第四章 多產品製造程序的最佳派遣策略 60 4.1 數學規劃模型 60 4.2 簡單案例 64 4.2.1 最小化系統時間期望值的派遣策略 66 4.2.2最大化程序製程能力的派遣策略 69 第五章 多產品等候網路系統的模擬程序 73 5.1 多產品等候網路系統的模擬步驟 73 5.1.1 步驟一:決定各產品抵達時間,照給定派遣控制策略分配機台;決定各機台處理時間 74 5.1.2 步驟二:將抵達機台各種產品,依照抵達時間混合排列順序 76 5.1.3 步驟三:判斷抵達機台的產品是否流失(Admission Control) 77 5.1.4 步驟四:依排程規則重排暫存區中產品(Scheduling Control) 78 5.1.5 步驟五:計算產品在機台 的等待時間,開始處理時間,離開時間以及系統時間 78 5.2多產品等候網路系統的RbR控制系統模擬步驟 81 5.3多產品等候網路系統的模擬研究 84 5.3.1 案例一:最小化系統時間期望值 86 5.3.2 案例二:最大化製程能力指標 98 第六章 案例研究 109 6.1 排程規則的影響 109 6.2 Double-EWMA調協參數的影響 118 第七章 結論與展望 125 參考文獻 126 附錄A:EWMA輸出變異數推導(Ai,2009) 132 附錄B:Double-EWMA輸出變異數推導(Lee,2012) 142

    Ai, B. Private Communications, Huazhong University of Science and Technology, Wuhan, China, 2009.
    Blackstone, J. H., Phillips, D. T. & Hogg, G. L. A state-of-the-art survey of dispatching rules for manufacturing job shop operations. Int. J. Prod. Res., 20, 27–45, 1982.
    Bhaskaran, K. & Pinedo, M. In Handbook of Industrial Engineering, edited by G. Salvendy. John Wiley, New York, 1992.
    Box, G. E. P., Jenkins, G. M. & Reinsel, G. Time Series Analysis Forecasting And Control(3rd Ed.). Prentice-Hall, 1994
    Bolch, G., Greiner, S., Meer, H., Trivedi, K. S. Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. WILEY-INTERSCIENCE, 2006.
    Baez Senties, O., Azzaro-Pantel, C., Pibouleau, L. & Domenech, S. Multiobjective scheduling for semiconductor manufacturing plants. Comput. Chem. Eng. vol. 34, 555–566, 2010.
    Cassandras, C. G. & Lafortune, S. Introduction To Discrete Event System. Kluwer Academic. 1999.
    Choi J. Y. & Reveliotis, S. Relative value function approximation for the capacitated re-entrant line scheduling problem. IEEE Trans. Autom. Sci. Eng., vol. 2, no. 3, pp. 285–299, Jul. 2005.
    Dabbas, R. M., Chen, H. N. & Fowler J. W. et al., A combined dispatching criteria approach to scheduling semiconductor manufacturing systems. Comput. Ind. Eng., vol. 39, no. 3–4, pp. 307–324, Apr. 2001.
    Del Castillo, E., Statistical Process Adjustment for Quality Control. John-Wiley & Sons. New York, 2002.
    Dabbas, R. M. & Fowler, J. W. A new scheduling approach using combined dispatching criteria in wafer fabs. IEEE Trans. Semiconduct. Manufact., vol. 16, no. 3, pp. 501–510, Aug. 2003.
    Firth, S. K., Campbell, W. J., Toprac, A. & Edgar, T. F. Just-in-time adaptive disturbance estimation for run-to-run control of semiconductor processes. IEEE Trans. Semicond. Manuf. vol. 19, 298–315, 2006.
    Kutanoglu, E. & Sabuncuoglu, I. An analysis of heuristics in a dynamic job shop with weighted tardiness objectives. Int. J. Prod. Res., 37, 165–187, 1999.
    Ko, H. H., Kim, J., Kim, S. S. & Baek, J. G.. Dispatching rule for non-identical parallel machine with sequence-dependent setups and quality restrictions. Comput. Ind. Eng. 59, 448–457, 2010.
    Lee, R. Uzsoy, C. & Martin-Vega, L. A review of production planning and scheduling models in the semiconductor industry, part II: Shop floor control. IIE Trans. Scheduling Logistics, vol. 26, no. 5, pp. 44–55, Sept. 1994.
    Lee, Y. H. & Kim, T. Manufacturing cycle time reduction using balance control in the semiconductor fabrication line. Production Planning Control, vol. 13, no. 6, pp. 529–540, Sept. 2002.
    Mittler, M. & Schoemig, A. K. Comparison of dispatching rules for semiconductor manufacturing using large facility model. in Proc. 1999 Winter Simulation Conf., Phoenix, AZ, pp. 709–713, 1999.
    Morrison, J., Janakiram, M. & Kumar, P. R. A comparative study of scheduling policies at Motorola fabs, in Proceedings of the International Conference on Semiconductor Manufacturing Operational Modeling and Simulation. San Francisco, pp. 51–56, 1999.
    Moyne, J. Run-to-Run Control in Semiconductor Manufacturing. CRC Press, Florida, 2001.
    May, G. S. & Spanos, C. J. Fundamentals Of Semiconductor Manufacturing And Process Control. John Wiley & Sons. 2006.
    Ma, M. D., Chang, C. C., Wong, D. S. H.& Jang, S. S. Identification of tool and product effects in a mixed product and parallel tool environment. Journal of Process Control. 2008.
    Olkin, Ingram., Gleser, Leon J. & Derman, Cyrus., Probability Models And Applications. New York, 1980.
    Patel, N. S. & Jenkins, S. T. Adaptive optimization of run-to-run controllers: the EWMA example. IEEE Trans. Semicond. Manuf., vol. 13, pp. 97–107, 2000.
    Pasadyn, A. J. & Edgar, T. F., Observability and state estimation for multiple product control in semiconductor manufacturing. IEEE Trans. Semicond. Manuf. vol. 18, 592–604, 2005.
    Pierce, N. G. & Yurtsever, T. Dynamic dispatch and graphical monitoring system, in Proceedings of the International Conference on Semiconductor Manufacturing Operational Modeling and Simulation, San Francisco., pp. 57–61, 1999.
    Qu, P. & Mason, S. J. Metaheuristic scheduling of 300-mm lots containing multiple orders. IEEE Trans. Semiconduct. Manufact., vol. 18, no. 4, pp. 633–643, Nov. 2005.
    Raghu, T. S. & Rajendran, C. An efficient dynamic dispatching rule for scheduling in a job shop. Int. J. Prod. Econ., 32, 301–313, 1993.
    Rajendran, C. & Holthaus, O. A comparative study of dispatching rules in dynamic flowshops and jobshops. Eur. J. Op. Res., 116, 156–170, 1999.
    Sachs, E., Hu, A. & Ingolfsson, A. Run by run process control: combining SPC and feedback control, IEEE Trans. Semicont. Manuf., vol. 8, pp. 26–43, 1995.
    Smith, T. H. & Boning, D. S. Artificial neural network exponentially weighted moving average controller for semiconductor processes, J. Vacuum Science Tech., vol. 15, pp. 236–239, 1997.
    Tseng, S. T., Yeh, A. B., Tsung, F. & Chan, Y. Y. A study of variable EWMA controller. IEEE Trans. Semicond. Manuf., vol. 16, pp. 633–643, 2003.
    Wang, Zuntong., Wu, Qidi. & Qiao, Fei. A Lot Dispatching Strategy Integrating WIP Management and Wafer Start Control. IEEE Trans. Autom. Sci. Eng., vol. 4, no. 4, pp. 579–583, Jul. 2007.
    Wang, M. H. Quasi Internal Model Control Design for Run-to-Run Processes with Unknown Time-Variant Gains. M.S. Thesis, Chemical Engineering, Cheng Kung University, June 2011.
    Wein, L. M. Scheduling semiconductor wafer fabrication. IEEE Trans. On Semiconductor Manufacturing. vol. 1, no. 3, pp. 115–130, Aug. 1988.
    Wu, M. F., Lin, W. K., Ho, C. L., Wong, D. S. H., Jang, S. S., Zheng, Y. & Jain, A. A Feed-Forward/Feedback Run-to-Run Control of a Mixed Product Process: Simulation and Experimental Studies. Ind. Eng. Chem. Res. 46, 6963–6970, 2007.
    Wu, M. F., Lin, C. H., Wong, D. S. H., Jang, S. S. & Tseng, S. S. Performance Analysis of EWMA Controllers Subject to Metrology Delay. IEEE Trans. On Semiconductor Manufacturing. vol. 21, no. 3, pp. 413–425, Aug. 2008.
    Wu, K. J. Optimal Dispatching Policies for Semiconductor Manufacturing Networks with Multiple Products and Finite Storage Capacities. M.S. Thesis, Chemical Engineering, Cheng Kung University, July 2011.
    Zheng, Y., Lin, Q. H., Wong, D. S. H., Jang, S. S. & Hui, K. Stability and performance analysis of mixed product run-to-run control. J. Process. Control 16, 431–443, 2006.

    下載圖示 校內:2014-08-23公開
    校外:2014-08-23公開
    QR CODE