| 研究生: |
朱祐誼 Chu, Yu-Yi |
|---|---|
| 論文名稱: |
板材折邊電磁成形之有限元素耦合模擬 Coupled FEM Modeling for Electromagnetic Forming of Sheet Metal Flanging |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 耦合 、有限元素法 、板材折邊 、電磁成形 |
| 外文關鍵詞: | Sheet metal flanging, Electromagnetic forming, Coupling, Finite element method |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,汽車與航空業發展結構輕量化,3C產業亦追求短小輕薄,故鋁合金被應用於板材的需求日益增加,然其在應用上具有可成形性與回彈之問題。高速率成形製程如電磁成形因高應變率與慣性作用,可有效提昇鋁合金之可成形性;同時,由於電磁力近乎於均壓力,故材料幾乎沒有回彈的問題,可用以發展鋁合金板材的各種加工。
本文應用Ansoft公司之有限元素套裝軟體 Maxwell 3D,利用改變電流值與工件幾何等製程參數來研究電磁成形對於板材折邊模擬之影響,探討成形過程中各種電磁參數的變化,並將所得之電磁參數輸入有限元素套裝軟體LS-DYNA,選擇適用的變形理論與材料參數,模擬板材受電磁力影響之變形,並將兩套軟體耦合模擬工件變形對暫態電磁力的影響。
由模擬結果可知,成形過程工件的變形會明顯的影響電磁力的大小;同時,無預成形板材角落之成形性受到電磁力不足與餘料太多的影響,成形較其他部位差。本論文得到線圈及胚料的幾何形狀會明顯影響成形效果之結論。
Recently, the requirement of Aluminum alloy applied to sheet metal is increasing while the automobile and aviation industries develop lightweight structures and the 3C industry produces light and delicate gadgets. However, the current application of aluminum alloy is limited in its material properties, such as formability and springback.
Electromagnetic forming, a high-energy-rate forming process, can effectively improve the formability of aluminum alloy due to its high strain rate and inertia force. Electromagnetic forming also performs an average pressure distribution of electromagnetic force which allows for forming of aluminum alloy nearly without springback.
In this research, Ansoft Maxwell 3D and LS-DYNA, softwares of finite element analysis, had been used. The simulation analyzed the effect of electromagnetic forming upon flanging by modulating manufacturing parameters, such as current and geometry of sheet metal. The results from Ansoft were imported into LS-DYNA. Suitable deformation theory and material parameters were chosen to simulate the deformation of sheet metal which was affected by electromagnetic force. The influence of transient electromagnetic force, affected by the deformation of sheet metal, was simulated by coupling two softwares.
Examining the simulation results, the deformation of sheet metal would affect the magnitude of electromagnetic force, and the corners of sheet metal had worse formability because of the insufficient electromagnetic force and flash. Therefore, it concluded that the geometry of coil and sheet metal had great influence on formability.
1.Balanethiram, V.S., G.S. Daehn, “Enhanced formability of interstitial free iron at high strain rates”, Scripta metallurgica et materialia, 27, pp. 1783-1788, 1992
2.Balanethiram, V.S., G.S. Daehn, “Hyperplasticity: increased forming limits at high work- piece velocity”, Scripta metallurgica, pp.515-520, 1994
3.Balanethiram, V.S., X. Hu, M. Altynova, G.S. Daehn, “Hyperplasticity: enhanced formability at high rates”, Journal of Material Processing Technology, pp. 595-600, 1994
4.Beley, I.V., S.M. Ferrtik, L. T. Khimenko, “Electromagnetic Metal Forming Handbook”, English Version of Russian book translated by M. M. Altynova, Ohio State University, 1996
5.Bendijima, B., M. Feliachi, “Finite element analysis of transient phenomena in electromagnetic forming system”, Computation in Electromagnetics, IEE Conference Publication, pp. 113-116, 1996
6.Brower, D.F., “What you can do with magnetic pulse forming”, Metal Progress, April, pp. 79-83, 1962
7.Chiou, J.M., “A Study of Ductile Damage in Metal Forming”, A thesis submitted in supplication for degree of Ph.D., 1996
8.Dilts, G.A., “Moving least-squares particle hydrodynamics. II. Conservation and boundaries“, Int. J. Numer. Meth. Eng. 48, pp. 1503-1524, 2000
9.Drysdale, W.H., J.D. Powell, B.P. Burns, A.E. Zielinski, “A survey of codes for modeling electromagnetic launching”, Army Research Laboratory Report, No. ARL-MR-64, May 1993
10.Duffy, J., “Proc. Workshop on Shear Localization”, Brown Univ. Report MRL-E-127, pp. 19-29, 1981
11.El-Azab, A., M. Garnich, A. Kapoor, “Modeling of the electromagnetic forming of sheet metals state-of-the-art and future needs”, Journal of Materials Processing Technology, 142, pp. 744-754, 2003
12.Fenton, R.K., G.S. Daehn et al., “Modeling of Electromagnetically Formed Sheet Metal”, Journal of Material Processing Technology, pp. 6-16, 1998
13.Hainsworth, G., P.J. Lwonard, D. Rodger, “Finite element modeling of magnetic compression using coupled electromagnetic-structural codes”, IEEE Transactions on Magnetics, 32 (3), pp. 1050-1053, 1996
14.Hopkins, D.A., Francis Stefani, Kuo-Ta Hsieh, Bok-ki Kim, “Analysis of startup behavior in a C-shaped armature using linked emap3d/dyna3d finite element codes”, IEEE Transactions on Magnetics, 35 (1), pp. 59-64, 1999
15.Hsieh, K.T., “A Lagrangian formulation for mechanically, thermally coupled electromagnetic diffusive processes with moving conductors”, IEEE Transactions on Magnetics, pp. 604-609, 1995
16.Hsieh, K.T., B.K. Kim, “One kind of scaling relations on electromechanical systems”, IEEE Transactions on Magnetics, pp. 240-244, 1997
17.Johnson, G.R., W.H. Cook, “Proceedings of Seventh Interational Symposium on Ballistics”, Am. Def. Prep. Org. (ADPA), Netherlands, pp. 541, 1983
18.Kaltenbacher, M., H. Landes, R. Lerch, “A strong coupling model for the simulation of magnetomechanical systems using a predictor/multicorrector algorithm” J. Appl. Comput. Electromag. Soc., pp.102-106, 1997
19.Kobayashi, H., B. Dodd, “A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth”, Int. J. Impact Eng., Vol. 8, pp. 1-13, 1989
20.Kobayashi, H., B. Dodd, “Formation of Adiabatic Shear Bands in Steel and Titanium Twisted at Dynamic Rates”, J. Jpn. Soc. Technol. Plast., Vol. 29, pp. 1152-1158, 1988
21.Lesuer, D.R., G.J. Kay, M.M. LeBlanc, “Modeling large-strain, high-rate deformation in metals”, Third Biennial Tri-Laboratory Engineering Conference Modeling and Simulation, Pleasanton, CA, November 3-5, 1999
22.Ludwik, P., “Elemente der Technologischen Mechanik”, Springer Verlag, Berlin, pp. 32, 1909
23.Malvern, L.E., “The propagation of longitudinal waves of plastic deformation in a bar ofmaterial exhibiting a strain-rate effect”, J Appl. Mech., Vol.18, pp. 203-208, 1951
24.Monaghan, J.J., “Smoothed particle hydrodynamics“, Ann. Rev. Astr. Astrophys, pp. 543-574, 1992
25.Oliveira, D.A., M.J. Worswick et al., “Electromagnetic forming of aluminum alloy sheet: Free-form and cavity fill experiments and model“, Journal of Materials Processing Technology, 170, pp. 350-362, 2005
26.Oliveira, D.A., M.J. Worswick, “Electromagnetic forming of aluminium alloy sheet”, J. Phys. IV France, pp. 293-298, 2003
27.Panshikar, H.M., “Computer modeling of electromagnetic forming and impact welding“, M.S. Thesis, Ohio State University, 2000
28.Seth, M., V.J. Vohnout, G.S. Daehn, “Formability of steel sheet in high velocity impact”, Journal of Materials Processing Technology, 168, pp. 390-400, 2005
29.Sung, H.L., D.N. Lee, “A Finite Element Analysis of Electromagnetic Forming for Tube Expansion”, Journal of Engineering Materials and Technology, pp. 250-254, 1994
30.Tamhanc, A.A., M.M. Altynova, G.S. Daehn, “Effect of sample size on ductility in electromagnetic ring expansion”, Scripta Metallurgica et Materialia, 34 (8), pp. 1345-1350, 1996
31.Vinh, T., M. Afzali, A. Roche, “Fast Fracture of Some Usual Metals at Combined High Strain and High Strain Rate”, Mechanical Behavior of Materials, Vol. 2, pp. 633-642, 1979
32.Zerilli, F. J., R.W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations”, J. Appl. Phys., Vol. 61, pp. 1816-1825, 1987
33.Zhou, M., A. Needleman, R.J. Clifton, “Finite element simulations of shear localization in plate impact”, J. Mech. Phys. Solids, Vol. 42, pp. 423-458, 1994
34.宋福民, “管件電磁成形研究”, 哈爾濱工業大學博士論文, 1996
35.李春峰, 于海平, “電磁成形技術理論研究進展”, Journal of Plasticity Engineering, Vol. 12, No. 5, 2005
36.李榮顯, “塑性加工學”, 三民書局, pp. 445-446, 1986
37.徐家權, “溫度及應變速率在 6061 鋁合金動態塑變行為與差排結構之效應分析”, 國立成功大學碩士論文, 1999
38.蘇琨祥, 孫振峰, “影響渦電流非破壞檢測因素之研究”, 中華民國第五屆高雄應用科技大學學術研討會, pp. 298-303