簡易檢索 / 詳目顯示

研究生: 徐啟華
Hsu, Chi-Hua
論文名稱: 應用無網格法於熱環境下之電磁彈性結構分析
Meshfree method analysis of magnetoelectroelastic structures in thermal environments
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 79
中文關鍵詞: 無網格伽遼金電磁彈材料四叉樹
外文關鍵詞: element-free Galerkin method, Magnetoelectroelastic, Quadtree, M-integral
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出無網格伽遼金法(Element free Galerkin method;EFGM)和四叉樹無網格伽遼金法(Quadtree Element free Galerkin method;QEFGM)模擬在熱環境下之電磁彈性材料之靜態和破壞問題。藉由結合最小勢能原理和馬克士威方程組推導電磁彈性材料之統御方程組,使用最小移動二乘法(moving Least Squares;MLS)建構形狀函數。由於此形狀函數不滿足克羅內克(Kronecker delta)函數性質,因此在邊界條件上施加罰函數(penalty method)來修正。探討裂縫問題時,由於裂紋造成位移場的不連續而引入繞射法(diffraction method)對形狀函數進行修正和利用背景分解法(the background decomposition method;BDM) 取代傳統背景網格生成來提高數值解之精確度,最後透過M-integral方法計算應力強度因子。首先,透過對電磁彈性結構柱進行驗證並觀察在熱環境下熱電/熱磁效應對材料物理特性之影響。更進一步探討在不同熱環境下,電磁彈性結構樑之物理特性變化。最後,藉由中間裂紋電磁彈性平板進行驗證並觀察熱環境對應力強度因子的影響。在這些數值模擬問題中,顯示EFGM/QEFGM對電磁彈性材料之多物理場耦合和破裂問題都具有計算高效率和準確性。

    In this dissertation report, the element-free Galerkin method (EFGM) and quadtree element-free Galerkin method (QEFGM) are proposed for the static analysis and fracture behaviour of a magnetoelectroelastic (MEE) structure in thermal environments. The system governing equations of MEE structures are derived from the principle of minimum potential energy and Maxwell's equations. In EFGM, the moving least-squares (MLS) method is utilized to generate shape functions, however, because it does not satisfy the principle of the Kronecker delta, the penalty method is implemented to impose approximate boundary conditions. In the fracture problem, the crack caused a discontinuous displacement field; therefore, the shape function is corrected using the diffraction method. The background decomposition method is used to replace the background cell generation to improve the accuracy of the numerical solution and to calculate the stress intensity factors using the M-integral.
    First, a plane strain MEE material with the z-axis polarization direction is assumed. And then, the results are verified and applied to reveal the effects of thermo-magnetic and thermo-electric coupling using the MEE column and a comparative study is conducted to evaluate the variations in the physical characteristics along the longitudinal direction of the MEE beam in different thermal environments. Finally, the SIFs of the internal cracked plate are calculated to verify and observe them effectively in a thermal environment. The numerical results demonstrate the efficiency and accuracy of the EFG/QEFGM formulation for multi-physics or fracture simulation of MEE structures.

    摘要 i ABSTRACT xxviii 誌謝 xxix CONTENS xxx LIST OF TABLES xxxii LIST OF FIGURES xxxiii NOMENCLATURE xxxv CHAPTER 1. INTRODUCTION 1 1.1. Motivations and objectives 1 1.2. Literature review 2 1.3. Organisation of the dissertation 5 CHAPTER 2. FUNDAMENTAL EQUATIONS AND THEORIES 7 2.1. Magnetoelectroelastic material 7 2.1.1. Constitutive equation 7 2.1.1.1. Thermal effect 11 2.1.1.2. Crack tip fields in MEE material 11 2.2. Fundamental theory and principles of EFGM 14 2.2.1. Global Galerkin weak form 14 2.2.2. Shape function 15 2.2.2.1. Moving least-squares (MLS) 16 2.2.2.2. Weight function 18 2.2.3. Penalty method 19 2.2.4. Background cell 19 2.2.4.1. Numerical integration 20 2.2.5. J-integral calculation 21 2.3. Quadtree element-free Galerkin method (QEFGM) 23 2.3.1. Modified weighted functions 23 2.3.2. Background decomposition method (BDM) 24 2.3.2.1. Procedures of node grading 25 2.3.2.2. Quadtree partitioning technology 25 2.3.2.3. Automatic meshing of background cells 26 CHAPTER 3. NUMERICAL MODEL AND PROCEDURES 32 3.1. Construction of MEE structure model 32 3.2. Modelling procedures for the EFGM 33 3.3. Evaluation of the stress intensity factors 38 3.3.1. M-integral 38 3.4. Analysis steps and program flow 42 CHAPTER 4. SIMULATION ANALYSIS AND DISCUSSION 44 4.1. A magnetoelectroelastic column 44 4.2. A magnetoelectroelastic beam 46 4.3. Internal cracked magnetoelectroelastic plate 50 CHAPTER 5. CONCLUSIONS 69 REFERENCES 71 Appendix A 77

    [1] Van Suchtelen, J. (1972). Product properties: a new application of composite materials. Phillips Research Reports, 27, 28-37.
    [2] Ryu, J., Priya, S., Carazo, A. V., Uchino, K., & Kim, H. E. (2001). Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate titanate/terfenol‐D laminate composites. Journal of the American Ceramic Society, 84(12), 2905-2908.
    [3] Pan, E. (2001). Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech., 68(4), 608-618.
    [4] Pan, E., & Heyliger, P. (2002). Free vibrations of simply supported and multilayered magneto-electro-elastic plates. Journal of Sound and Vibration, 252(3), 429-442.
    [5] Buroni, F. C., & Sáez, A. (2010). Three-dimensional Green's function and its derivative for materials with general anisotropic magneto-electro-elastic coupling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2114), 515-537.
    [6] Zadov, B., Elmalem, A., Paperno, E., Gluzman, I., Nudelman, A., Levron, D., ... & Liverts, E. (2012). Modeling of small DC magnetic field response in trilayer magnetoelectric laminate composites. Advances in Condensed Matter Physics, 2012, 1-18.
    [7] Wang, J., Chen, L., & Fang, S. (2003). State vector approach to analysis of multilayered magneto-electro-elastic plates. International Journal of Solids and Structures, 40(7), 1669-1680.
    [8] Chen, J., Chen, H., Pan, E., & Heyliger, P. (2007). Modal analysis of magneto-electro-elastic plates using the state-vector approach. Journal of Sound and Vibration, 304(3-5), 722-734.
    [9] Kondaiah, P., Shankar, K., & Ganesan, N. (2012). Pyroelectric and pyromagnetic effects on multiphase magneto–electro–elastic cylindrical shells for axisymmetric temperature. Smart materials and structures, 22(2), 025007.
    [10] Kondaiah, P., Shankar, K., & Ganesan, N. (2013). Pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate. Coupled Syst Mech, 2(1), 1-22.
    [11] Jandaghian, A., & Rahmani, O. (2016). Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation. Smart materials and structures, 25(3), 035023.
    [12] Vinyas, M., & Kattimani, S. C. (2017). A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading. Struct Eng Mech, 62(5), 519-535.
    [13] Vinyas, M., & Kattimani, S. C. (2018). Investigation of the effect of particle arrangement on the static response of magneto-electro-thermo-elastic plates. Composite Structures, 185, 51-64.
    [14] Karimi, M., & Shahidi, A. R. (2017). Nonlocal, refined plate, and surface effects theories used to analyze free vibration of magnetoelectroelastic nanoplates under thermo-mechanical and shear loadings. Applied Physics A, 123(5), 304.
    [15] Zhang, P., Liu, J., & Lin, G. (2017, April). Static analysis for magneto-electro-elastic plates based on the scaled boundary finite element method. In IOP Conference Series: Materials Science and Engineering, 191(1), 012033.
    [16] Arefi, M., & Soltan Arani, A. H. (2018). Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mechanics Based Design of Structures and Machines, 46(6), 669-692.
    [17] Subhani, S. M., Maniprakash, S., & Arockiarajan, A. (2017). Nonlinear magneto-electro-thermo-mechanical response of layered magnetoelectric composites: theoretical and experimental approach. Smart Materials and Structures, 26(10), 105010.
    [18] Cingoski, V., Miyamoto, N., & Yamashita, H. (1998). Element-free Galerkin method for electromagnetic field computations. IEEE Transactions on Magnetics, 34(5), 3236-3239.
    [19] Xuan, L., Zeng, Z., Shanker, B., & Udpa, L. (2004). Element-free Galerkin method for static and quasi-static electromagnetic field computation. IEEE Transactions on Magnetics, 40(1), 12-20.
    [20] Li, Q., & Lee, K. M. (2006). An adaptive meshless method for magnetic field computation. IEEE transactions on magnetics, 42(8), 1996-2003.
    [21] Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, 181(3), 375-389.
    [22] Wang, J. G., & Liu, G. (2002). A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 54(11), 1623-1648.
    [23] Sladek, J., Sladek, V., Krahulec, S., & Pan, E. (2013). The MLPG analyses of large deflections of magnetoelectroelastic plates. Engineering Analysis with Boundary Elements, 37(4), 673-682.
    [24] Belytschko, T., Gu, L., & Lu, Y. Y. (1994). Fracture and crack growth by element free Galerkin methods. Modelling and Simulation in Materials Science and Engineering, 2(3A), 519.
    [25] Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element‐free Galerkin methods. International journal for numerical methods in engineering, 37(2), 229-256.
    [26] Álvarez Hostos, J. C., Bencomo, A. D., & Cabrera, E. P. (2018). Simple iterative procedure for the thermal–mechanical analysis of continuous casting processes, using the element-free Galerkin method. Journal of Thermal Stresses, 41(2), 160-181.
    [27] Zhang, T., & Li, X. (2020). Analysis of the element-free Galerkin method with penalty for general second-order elliptic problems. Applied Mathematics and Computation, 380, 125306.
    [28] Ilati, M., & Dehghan, M. (2018). Error analysis of a meshless weak form method based on radial point interpolation technique for Sivashinsky equation arising in the alloy solidification problem. Journal of Computational and Applied Mathematics, 327, 314-324.
    [29] Mellouli, H., Jrad, H., Wali, M., & Dammak, F. (2020). Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method. Computers & Mathematics with Applications, 79(11), 3160-3178.
    [30] Marechal, Y., Coulomb, J. L., Meunier, G., & Touzot, G. (1993). Use of the diffuse element method for electromagnetic field computation. IEEE Transactions on magnetics, 29(2), 1475-1478.
    [31] Verardi, S. L. L., Machado, J. M., & Cardoso, J. R. (2002). The element-free Galerkin method applied to the study of fully developed magnetohydrodynamic duct flows. IEEE transactions on magnetics, 38(2), 941-944.
    [32] Batra, R. C., Porfiri, M., & Spinello, D. (2006). Analysis of electrostatic MEMS using meshless local Petrov–Galerkin (MLPG) method. Engineering Analysis with Boundary Elements, 30(11), 949-962.
    [33] Liu, Y. S., & Chen, S. S. (2018). Modeling of magneto–electro-elastic problems by a meshless local natural neighbor interpolation method. Engineering Analysis with Boundary Elements, 93, 143-149.
    [34] Organ, D., Fleming, M., Terry, T., & Belytschko, T. (1996). Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Computational mechanics, 18(3), 225-235.
    [35] Zhuang, X., Augarde, C., & Bordas, S. (2011). Accurate fracture modelling using meshless methods, the visibility criterion and level sets: formulation and 2D modelling. International Journal for Numerical Methods in Engineering, 86(2), 249-268.
    [36] Ventura, G., Xu, J. X., & Belytschko, T. (2002). A vector level set method and new discontinuity approximations for crack growth by EFG. International Journal for numerical methods in engineering, 54(6), 923-944.
    [37] Khosravifard, A., & Hematiyan, M. R. (2010). A new method for meshless integration in 2D and 3D Galerkin meshfree methods. Engineering Analysis with Boundary Elements, 34(1), 30-40.
    [38] Wu, C. T., Chi, S. W., Koishi, M., & Wu, Y. (2016). Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses. International Journal for Numerical Methods in Engineering, 107(1), 3-30.
    [39] Hematiyan, M., Khosravifard, A., & Liu, G. (2014). A background decomposition method for domain integration in weak-form meshfree methods. Computers & Structures, 142, 64-78.
    [40] Hwu, C. (2021). Anisotropic Elasticity with Matlab. Springer Nature.
    [41] Rao, B. N., & Kuna, M. (2008). Interaction integrals for fracture analysis of functionally graded magnetoelectroelastic materials. International journal of fracture, 153(1), 15-37.
    [42] Mach, K. J., Nelson, D. V., & Denny, M. W. (2007). Techniques for predicting the lifetimes of wave-swept macroalgae: a primer on fracture mechanics and crack growth. Journal of Experimental Biology, 210(13), 2213-2230.
    [43] Liu, G. R., & Gu, Y. T. (2005). An introduction to meshfree methods and their programming. Springer Science & Business Media.
    [44] Naderi, A., & Baradaran, G. (2013). Element free Galerkin method for static analysis of thin micro/nanoscale plates based on the nonlocal plate theory. International Journal of Engineering, 26(7), 795-806.
    [45] Zamani, A., Gracie, R., & Eslami, M. R. (2010). Higher order tip enrichment of extended finite element method in thermoelasticity. Computational Mechanics, 46(6), 851-866.
    [46] Khosravifard, A., Hematiyan, M. R., Bui, T. Q., & Do, T. V. (2017). Accurate and efficient analysis of stationary and propagating crack problems by meshless methods. Theoretical and Applied Fracture Mechanics, 87, 21-34.
    [47] Li, X. C., & Yao, W. A. (2011). Symplectic analytical solutions for the magnetoelectroelastic solids plane problem in rectangular domain. Journal of Applied Mathematics, 2011(3), 1-21.

    下載圖示 校內:2025-09-24公開
    校外:2025-09-24公開
    QR CODE