簡易檢索 / 詳目顯示

研究生: 魏姿勻
Wei, Zi-Yun
論文名稱: 以新型、快速之單步驟合成硫參雜鎳鐵鈷三元氫氧化物做為高效尿素氧化電催化劑
A new, ultrafast one-step method for the synthesis of sulfur doped multi-metal hydroxide and its use as high-performance urea oxidation reaction electrocatalyst
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 69
中文關鍵詞: 尿素氧化反應硫參雜氫氧化物電催化劑腐蝕工程
外文關鍵詞: multi-element, sulfur-doped, hydroxide, corrosion engineering, catalyst, urea oxidation reaction (UOR)
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尿素分解反應為一種具有前景之產氫途徑,因為比水分解更加高效率所需電位較低,但其六電子轉移降低了反應速率,因此開發高性能的尿素氧化催化劑至關重要。雖然貴金屬為高活性表現之電催化劑材料,但其稀少性及高成本限制其應用。近年來,過渡金屬基催化劑展現了很好的尿素氧化活性,而多元金屬離子參雜可調節電子結構以提供更多活性位點,氫氧化物是為電催化表現極好之尿素氧化催化劑,硫參雜或硫化物因為高導電性及高活性是為極有前途之產氫催化劑,然而常見的過渡金屬基催化劑製程如水熱法等都需耗能又耗時,因而降低產氫之效率及應用性。
    本研究開發出一種在室溫下進行,節能且快速之單步驟製程,此製程中,材料直接生長在泡沫鎳上,沒有影響表現的黏著劑,以此節能快速製程合成具有金屬相之硫參雜三元鎳鐵鈷氫氧化物作為尿素氧化催化劑,表現出傑出的電化學性能以及高穩定度,本節能製程製出高效之電催化劑,可以達到真正的節能且高效率的產氫經濟性。本研究中會詳細探討此簡單且節能製程之機制,分析鐵和硫之前驅物影響製程反應,並研究多元金屬之協同反應和硫參雜對催化反應之作用,以及在UOR過程中催化劑之轉變機制。

    Urea oxidation reaction (UOR) is a promising energy-saving avenue for sustainable hydrogen production. However, the 6-electron transfer reaction lead the sluggish kinetic. In this work, a new, ultrafast, energy-saving one-step corrosion method are developed to synthesize S-NiFeCo(OH)x with metallic phase as the UOR catalyst. The ternary metal catalyst is successfully synthesized by this new method. Most importantly, the addition of sulfur source efficiently facilitates the corrosion reaction to few minutes. The obtained SNiFeCo(OH)x exhibits the outstanding UOR performance with the potential versus RHE of 1.34, 1.36, 1.38, 1.43, and 1.54 V at the current density of 10, 100, 200, 400, and 900 mA cm-2. The S-NiFeCo(OH)x performs the great durability for 50 hours at 10 mA mA cm-2. The outstanding electrochemical performances are attributed to the high surface area, the faster electron transfer due to the metallic phase, sulfur involved and the binder-free synthesis, and the synergistic effects of ternary metals and sulfur involved that adjust the electronic structure to promote more active sites. Using the new, energy-saving, cost-effective, convenient method at room temperature to fabricate a high-performance UOR catalyst is a promising strategy to fulfill the hydrogen economy.

    總目錄 摘要 i Extend Abstract ii 致謝 xiii 總目錄 xiv 圖目錄 xvi 表目錄 xviii 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 第2章 文獻回顧 4 2.1 電化學產氫反應 4 2.1.1 電解水分解反應 vs電解尿素分解反應 4 2.1.2 UOR活性位點NiOOH 7 2.1.3 電催化產氫效能評估 9 2.2 多元過渡金屬基催化劑 11 2.3 參雜S之影響 12 2.4 金屬腐蝕法 14 第3章 實驗方法與分析原理 17 3.1 實驗藥品 17 3.2 實驗流程與步驟 17 3.3 工作電極製備 19 3.3.1 泡沫鎳酸處理 19 3.3.2 電極製備 19 3.4 材料分析方法 19 3.4.1 X射線衍射儀 (X-ray diffraction Spectrometer) 19 3.4.2 傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectroscopy) 20 3.4.3 掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope) 20 3.4.4 穿透式電子顯微鏡 (Transmission electron microscopy) 20 3.4.5 X射線光電子能譜 (X-ray photoelectron spectroscopy) 21 3.4.6 電化學分析 21 3.4.7 臨場拉曼光譜(In-situ Raman) 22 第4章 結果與討論 23 4.1 X光繞射晶體結構分析 23 4.2 傅立葉轉換紅外線光譜分析 24 4.3 掃描式及穿透式電子顯微鏡分析 25 4.4 X射線光電子能譜分析 32 4.5 製程之合成機制 43 4.6 電化學分析 45 4.7 活化後之掃描式及穿透式電子顯微鏡分析 52 4.8 活化後之X射線光電子能譜分析 55 4.9 In-situ 拉曼光譜分析 60 第5章 結論 63 第6章 參考文獻 64

    第6章 參考文獻
    1. Gao, W., et al., Highly active electrocatalysts of CeO2 modified NiMoO4 nanosheet arrays towards water and urea oxidation reactions. Electrochimica Acta, 2019. 320.
    2. Sun, X. and R. Ding, Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production. Catalysis Science & Technology, 2020. 10(6): p. 1567-1581.
    3. Yan, Y., et al., A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016. 4(45): p. 17587-17603.
    4. Zou, X. and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev, 2015. 44(15): p. 5148-80.
    5. Hu, S., et al., Synthesis of non-noble NiMoO4–Ni(OH)2/NF bifunctional electrocatalyst and its application in water-urea electrolysis. International Journal of Hydrogen Energy, 2020. 45(41): p. 21040-21050.
    6. Yu, Z.-Y., et al., Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy & Environmental Science, 2018. 11(7): p. 1890-1897.
    7. Mai, W., et al., Coaxial Ni3S2@CoMoS4/NiFeOOH nanorods for energy-saving water splitting and urea electrolysis. International Journal of Hydrogen Energy, 2021. 46(47): p. 24078-24093.
    8. Shen, J., et al., Spherical Co3S4 grown directly on Ni–Fe sulfides as a porous nanoplate array on FeNi3 foam: a highly efficient and durable bifunctional catalyst for overall water splitting. Journal of Materials Chemistry A, 2022. 10(10): p. 5442-5451.
    9. Liu, T., et al., Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochemistry Communications, 2015. 60: p. 92-96.
    10. Wang, H., et al., Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. Journal of Colloid and Interface Science, 2022. 613: p. 349-358.
    11. Kim, J.S., et al., Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018. 8(11).
    12. Lu, F., et al., First-Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances. Small, 2017. 13(45).
    13. Li, D., et al., Efficient Water Oxidation Using CoMnP Nanoparticles. J Am Chem Soc, 2016. 138(12): p. 4006-9.
    14. Liu, D., et al., High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. Journal of Materials Chemistry A, 2017. 5(7): p. 3208-3213.
    15. Li, Y., Z. Dang, and P. Gao, High‐efficiency electrolysis of biomass and its derivatives: Advances in anodic oxidation reaction mechanism and transition metal‐based electrocatalysts. Nano Select, 2021. 2(5): p. 847-864.
    16. Zhu, B., Z. Liang, and R. Zou, Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small, 2020. 16(7): p. e1906133.
    17. Suárez, D., N. Díaz, and K.M. Merz, Ureases: quantum chemical calculations on cluster models. Journal of the American Chemical Society, 2003. 125(50): p. 15324-15337.
    18. Vedharathinam, V. and G.G. Botte, Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium. Electrochimica Acta, 2012. 81: p. 292-300.
    19. Vedharathinam, V. and G.G. Botte, Direct evidence of the mechanism for the electro-oxidation of urea on Ni (OH) 2 catalyst in alkaline medium. Electrochimica Acta, 2013. 108: p. 660-665.
    20. Hu, X., et al., Urea Electrooxidation: Current Development and Understanding of Ni‐Based Catalysts. ChemElectroChem, 2020. 7(15): p. 3211-3228.
    21. Daramola, D.A., D. Singh, and G.G. Botte, Dissociation rates of urea in the presence of NiOOH catalyst: a DFT analysis. The Journal of Physical Chemistry A, 2010. 114(43): p. 11513-11521.
    22. Feng, X., et al., Modulation electronic structure of NiS nanoarray induced by Fe, V doping for high efficiency water and urea electrolysis. Journal of Industrial and Engineering Chemistry, 2022.
    23. Wang, H., et al., Transition metal nitrides for electrochemical energy applications. Chem Soc Rev, 2021. 50(2): p. 1354-1390.
    24. Babar, P., et al., Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis. ACS Sustainable Chemistry & Engineering, 2019. 7(11): p. 10035-10043.
    25. King, R.L. and G.G. Botte, Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis. Journal of Power Sources, 2011. 196(22): p. 9579-9584.
    26. Cui, M., et al., High‐Entropy Metal Sulfide Nanoparticles Promise High‐Performance Oxygen Evolution Reaction. Advanced Energy Materials, 2020. 11(3).
    27. Wang, G. and Z. Wen, Self-supported bimetallic Ni-Co compound electrodes for urea- and neutralization energy-assisted electrolytic hydrogen production. Nanoscale, 2018. 10(45): p. 21087-21095.
    28. Wang, Y., et al., Transition metal atoms M (M= Mn, Fe, Cu, Zn) doped nickel-cobalt sulfides on the Ni foam for efficient oxygen evolution reaction and urea oxidation reaction. Journal of Alloys and Compounds, 2022. 893: p. 162269.
    29. Diao, Y., et al., NiFe nanosheets as urea oxidation reaction electrocatalysts for urea removal and energy-saving hydrogen production. Biosensors and Bioelectronics, 2022: p. 114380.
    30. Yi, H., et al., Recent Advance of Transition‐Metal‐Based Layered Double Hydroxide Nanosheets: Synthesis, Properties, Modification, and Electrocatalytic Applications. Advanced Energy Materials, 2021. 11(14): p. 2002863.
    31. Ma, H., et al., Tuning the electronic structure of NiCoVOx nanosheets through S doping for enhanced oxygen evolution. Nanoscale, 2021. 13(40): p. 17022-17027.
    32. Kim, K.S., et al., Sulfur and phosphorus co-doped nickel-cobalt layered double hydroxides for enhancing electrochemical reactivity and supercapacitor performance. RSC Adv, 2021. 11(21): p. 12449-12459.
    33. Li, S., et al., Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping. Chinese Journal of Catalysis, 2020. 41(5): p. 847-852.
    34. Shi, Z., et al., Sulfur-Doped Nickel–Cobalt Double Hydroxide Electrodes for High-Performance Asymmetric Supercapacitors. ACS Applied Energy Materials, 2020. 3(11): p. 11082-11090.
    35. Huang, M., et al., Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. Journal of Power Sources, 2015. 277: p. 36-43.
    36. Chaudhari, N.K., et al., Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017. 9(34): p. 12231-12247.
    37. Li, X., et al., Ultrafast Room-Temperature Synthesis of Self-Supported NiFe-Layered Double Hydroxide as Large-Current-Density Oxygen Evolution Electrocatalyst. Small, 2022. 18(2): p. e2104354.
    38. Zhang, C., et al., Hydrated-Metal-Halide-Based Deep-Eutectic-Solvent-Mediated NiFe Layered Double Hydroxide: An Excellent Electrocatalyst for Urea Electrolysis and Water Splitting. Chem Asian J, 2019. 14(17): p. 2995-3002.
    39. Hunter, B.M., H.B. Gray, and A.M. Muller, Earth-abundant heterogeneous water oxidation catalysts. Chemical reviews, 2016. 116(22): p. 14120-14136.
    40. Marshall, A.T. and R.G. Haverkamp, Electrocatalytic activity of IrO2–RuO2 supported on Sb-doped SnO2 nanoparticles. Electrochimica Acta, 2010. 55(6): p. 1978-1984.
    41. Yin, H., et al., Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano Research, 2018. 11(8): p. 3959-3971.
    42. Wang, J., et al., Hierarchically Structured 3D Integrated Electrodes by Galvanic Replacement Reaction for Highly Efficient Water Splitting. Advanced Energy Materials, 2017. 7(14).
    43. Zhao, W., et al., NiFe Layered Double Hydroxides Grown on a Corrosion‐Cell Cathode for Oxygen Evolution Electrocatalysis. Advanced Energy Materials, 2021. 12(2).
    44. Wang, D., et al., Enhanced electrocatalytic oxidation of urea based on nickel hydroxide nanoribbons. Journal of Power Sources, 2012. 217: p. 498-502.
    45. Zheng, G., et al., Space-Confined Effect One-Pot Synthesis of gamma-AlO(OH)/MgAl-LDH Heterostructures with Excellent Adsorption Performance. Nanoscale Res Lett, 2019. 14(1): p. 281.
    46. Hajjami, M., et al., Efficient preparation of boehmite silica dopamine sulfamic acid as a novel nanostructured compound and its application as a catalyst in some organic reactions. New Journal of Chemistry, 2016. 40(4): p. 3066-3074.
    47. Vatanpour, V., et al., Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. Journal of Membrane Science, 2012. 401-402: p. 132-143.
    48. Aghazadeh, M., et al., Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2014. 18(6): p. 1569-1584.
    49. Lei, X., et al., Solvothermal synthesis of pompon-like nickel-cobalt hydroxide/graphene oxide composite for high-performance supercapacitor application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 549: p. 76-85.
    50. Xu, Q., et al., The impact of nickel source/doping elements/buffer on the structure of Ni(OH)2. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2014. 29(1): p. 44-48.
    51. Xu, W., et al., Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell. Sci Rep, 2014. 4: p. 5863.
    52. Biesinger, M.C., et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011. 257(7): p. 2717-2730.
    53. Li, X., et al., Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO3 /Ni-NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Adv Mater, 2020. 32(39): p. e2003414.
    54. Li, Y., et al., Ni-based 3D hierarchical heterostructures achieved by selective electrodeposition as a bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2021. 379.
    55. Wang, Y.F., et al., Hierarchical NiCo2S4@Nickel-Cobalt Layered Double Hydroxide Nanotube Arrays on Metallic Cotton Yarns for Flexible Supercapacitors. ACS Appl Mater Interfaces, 2019. 11(33): p. 30384-30390.
    56. Chen, L., et al., Facile synthesis of Cu doped cobalt hydroxide (Cu–Co(OH)2) nano-sheets for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2017. 5(43): p. 22568-22575.
    57. Wu, Q.D., et al., High-temperature electrochemical performance of Al-α-nickel hydroxides modified by metallic cobalt or Y(OH)3. Journal of Power Sources, 2009. 186(2): p. 521-527.
    58. Wen, D., et al., CoP nanoplates dotted with porous Ni3S2 nanospheres for the collaborative enhancement of hydrogen production via urea-water electrolysis. Applied Surface Science, 2022. 586.
    59. Löchel, B. and H.H. Strehblow, Breakdown of passivity of nickel by fluoride: II. Surface analytical studies. Journal of the Electrochemical Society, 1984. 131(4): p. 713.
    60. Hsu, L.-S. and R.S. Williams, Electronic-structure study of the Ni Ga and the Ni In intermetallic compounds using X-ray photoemission spectroscopy. Journal of Physics and Chemistry of Solids, 1994. 55(4): p. 305-312.
    61. Dickinson, T., A.F. Povey, and P.M. Sherwood, Dissolution and passivation of nickel. An X-ray photoelectron spectroscopic study. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1977. 73: p. 327-343.
    62. Xiong, X., et al., Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 2015. 11: p. 154-161.
    63. Hall, D.S., et al., Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc Math Phys Eng Sci, 2015. 471(2174): p. 20140792.
    64. He, W., et al., Amorphous nickel–iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction. Catalysis Science & Technology, 2020. 10(6): p. 1708-1713.
    65. Lee, S., et al., Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides. Angew Chem Int Ed Engl, 2019. 58(30): p. 10295-10299.
    66. Patil, U.M., et al., PolyHIPE Derived Freestanding 3D Carbon Foam for Cobalt Hydroxide Nanorods Based High Performance Supercapacitor. Sci Rep, 2016. 6: p. 35490.
    67. Garcia, A.C., et al., Enhancement of Oxygen Evolution Activity of Nickel Oxyhydroxide by Electrolyte Alkali Cations. Angew Chem Int Ed Engl, 2019. 58(37): p. 12999-13003.
    68. Zhou, L., J. Liu, and F. Dong, Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage. Spectrochim Acta A Mol Biomol Spectrosc, 2017. 173: p. 544-548.

    無法下載圖示 校內:2027-08-25公開
    校外:2027-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE