簡易檢索 / 詳目顯示

研究生: 王秋樺
Wang, Chiu-Hua
論文名稱: 開發癌症診斷的CDCP1適體
Development of aptamers targeting CUB Domain-Containing Protein 1 for cancer diagnosis
指導教授: 黃暉升
Huang, Huei-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 73
中文關鍵詞: CDCP1適體細胞-SELEX癌症診斷
外文關鍵詞: CDCP1, Aptamer, Cell-SELEX, Cancer diagnosis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是全球主要死因之一,因此早期診斷對提升治療成效與病患存活率至關重要。標靶性生物標誌物的發掘與應用已成為癌症診斷與治療領域的重點。其中,CUB domain-containing protein 1(CDCP1)是一種穿膜蛋白,已被證實在多種癌症中高度表達,並與腫瘤進展及預後不良密切相關。CDCP1在細胞表面以全長(flCDCP1)及切割變體(clCDCP1)存在,CDCP1被切割後會釋放出65 kDa的氨基端片段(ATF)。這些不同形式的CDCP1在癌症中具有促進腫瘤幹細胞特性及增壓藥物抗性等多重功能。近期研究已在癌症患者的臨床體液中檢測到ATF,顯示其作為癌症檢測生物標誌物的潛力。適體(aptamer)是一種單鏈DNA或RNA分子,因具備高穩定性、低生產成本及低免疫原性等優勢,逐漸成為癌症診斷與治療的新興工具,可用於標靶檢測或治療。本研究旨在開發針對CDCP1不同形式(flCDCP1、clCDCP1及ATF)的高特異性適體,以輔助癌症診斷。研究中利用細胞-SELEX技術,篩選CDCP1過度表達或剔除的T24細胞,並結合次世代定序分析,成功獲得五個候選適體。經點墨法及流式細胞術驗證,A2與A4適體對clCDCP1相對具高結合力, A5與A6適體能有效檢測條件培養基中的ATF,且其結合效力優於現有ATF特異性抗體。綜上所述,本研究篩選出的適體對CDCP1各形式均具高親和力與特異性,展現其於癌症液體活檢等臨床診斷應用的潛力。

    Cancer ranks as the top cause of death worldwide, making early diagnosis critical for improving treatment efficacy and patient survival rates. The discovery and application of targeted biomarkers have become important in cancer diagnosis and therapy. CUB domain-containing protein 1 (CDCP1) is highly expressed in various cancers and is closely associated with tumor progression and poor prognosis. CDCP1 is present on the cell surface in two forms: full-length (flCDCP1) and cleaved (clCDCP1), with the latter releasing an amino-terminal fragment (ATF). These different CDCP1 forms exhibit multiple functions in cancer, including promoting cancer stemness and enhancing drug resistance. Recent studies have detected ATF in the clinical fluids of cancer patients, highlighting its potential as a biomarker for cancer detection. Aptamers, which are single-stranded DNA or RNA, offer advantages such as high stability, low production costs, and low immunogenicity, making them valuable tools for targeted cancer diagnosis and therapy. This study aimed to develop specific aptamers targeting different CDCP1 isoforms to advance cancer diagnostics. Using cell-SELEX, we identified specific aptamers by screening T24 cells engineered for CDCP1 overexpression or knockout, and subsequently analyzed them via next-generation sequencing. Five candidate aptamers were identified and validated using dot blot and flow cytometry. Aptamers A2 and A4 had relatively high binding affinity toward clCDCP1, while aptamers A5 and A6 effectively recognized the ATF fragment in culture supernatants, demonstrating superior affinity and detection sensitivity compared to commercially available ATF-specific antibodies. The selected aptamers exhibit high affinity and specificity toward various CDCP1 isoforms, highlighting their strong potential for clinical diagnostic applications such as cancer liquid biopsy.

    Abstract I 致謝 III Contents IV List of Abbreviations VI Introduction 1 Materials and methods 7 Results 20 Establishing a cell-SELEX platform for selecting CDCP1 aptamers. 20 Assessing the DNA pools from the cell-SELEX. 21 Determining the binding affinity of CDCP1 aptamers. 23 The aptamers can bind to CDCP1 through the conformation of the aptamers. 25 Using aptamers to detect ATF 27 Aptamers do not affect the cleavage of CDCP1 and its function. 29 Discussion 30 Figures 34 Figure 1. Establishing a CDCP1 cell-SELEX platform for selecting aptamers 36 Figure 2. Assessing the DNA pools from the cell-SELEX 38 Figure 3. Analyzing the CDCP1 aptamers using NGS sequencing and confirming the target of aptamer binding. 41 Figure 4. Determining the binding affinity of CDCP1 aptamers 45 Figure 5. The aptamers can bind to CDCP1 through the conformation of the aptamers 50 Figure 6. Using aptamers to detect ATF 52 Figure 7. Aptamers do not affect the cleavage of CDCP1 and its function. 54 Figure 8. CDCP1 structure predicted by AlphaFold 55 References 56 Appendix 60 Appendix 1. List of Experimental Materials 61 Appendix 2. List of cell types in research. 62 Appendix 3. The structure and pathway of CUB domain-containing protein 1. 63 Appendix 4. The aptamer is folded into a 3D structure that enables target recognition. 64 Appendix 5. The number of cells used in Cell SELEX, the amount of input DNA, and the incubation time with the cells. 65

    1. Bray, F., et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024. 74(3): p. 229-263.
    2. Desai, S. and A.K. Guddati, Carcinoembryonic antigen, carbohydrate antigen 19-9, cancer antigen 125, prostate-specific antigen and other cancer markers: a primer on commonly used cancer markers. World J Oncol, 2023. 14(1): p. 4-14.
    3. Qi, X., et al., CDCP1: A promising diagnostic biomarker and therapeutic target for human cancer. Life Sci, 2022. 301(3): p. 120600.
    4. Khan, T., et al., The CDCP1 signaling hub: a target for cancer detection and therapeutic intervention. Cancer Res, 2021. 81(9): p. 2259-2269.
    5. Liu, C.L., et al., CDCP1 (CUB domain containing protein 1) is a potential urine-based biomarker in the diagnosis of low-grade urothelial carcinoma. PLoS One, 2023. 18(3): p. e0281873.
    6. Kryza, T., et al., Substrate-biased activity-based probes identify proteases that cleave receptor CDCP1. Nat Chem Biol, 2021. 17(7): p. 776-783.
    7. Saponaro, M., et al., CDCP1 expression is frequently increased in aggressive urothelial carcinoma and promotes urothelial tumor progression. Sci Rep, 2023. 13(1): p. 73.
    8. Yang, L., et al., Dysregulated expression of cell surface glycoprotein CDCP1 in prostate cancer. Oncotarget, 2015. 6(41): p. 43743-43758.
    9. He, Y., et al., CDCP1 enhances Wnt signaling in colorectal cancer promoting nuclear localization of β-catenin and E-cadherin. Oncogene, 2020. 39(1): p. 219-233.
    10. Razorenova, O.V., et al., VHL loss in renal cell carcinoma leads to up-regulation of CUB domain-containing protein 1 to stimulate PKC{delta}-driven migration. Proc Natl Acad Sci U S A, 2011. 108(5): p. 1931-1936.
    11. Predes, D., et al., CUB domain-containing protein 1 (CDCP1) binds transforming growth factor beta family members and increase TGF-β1 signaling pathway. Exp Cell Res, 2019. 383(1): p. 111499.
    12. Vizovisek, M., et al., The tumor proteolytic landscape: a challenging frontier in cancer diagnosis and therapy. Int J Mol Sci, 2021. 22(5): p. 2514.
    13. Wright, H.J., et al., CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer. Oncogene, 2016. 35(36): p. 4762-72.
    14. Casar, B., et al., In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated β1 integrin and induction of FAK/PI3K/Akt motility signaling. Oncogene, 2014. 33(2): p. 255-268.
    15. Liu, H., et al., CUB-domain-containing protein 1 (CDCP1) activates Src to promote melanoma metastasis. Proc Natl Acad Sci U S A, 2011. 108(4): p. 1379-1384.
    16. Kryza, T., et al., Effective targeting of intact and proteolysed CDCP1 for imaging and treatment of pancreatic ductal adenocarcinoma. Theranostics, 2020. 10(9): p. 4116-4133.
    17. He, Y., et al., Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCdelta. J Biol Chem, 2010. 285(34): p. 26162-26173.
    18. Altomare, D.A. and J.R. Testa, Perturbations of the AKT signaling pathway in human cancer. Oncogene, 2005. 24(50): p. 7455-7464.
    19. Chen, Y., et al., Development of an enzyme-linked immunosorbent assay for detection of CDCP1 shed from the cell surface and present in colorectal cancer serum specimens. J Pharm Biomed Anal, 2017. 139(7): p. 65-72.
    20. Lim, S.A., et al., Targeting a proteolytic neoepitope on CUB domain containing protein 1 (CDCP1) for RAS-driven cancers. J Clin Invest, 2022. 132(4) : p. e154604.
    21. Domsicova, M., et al., New insights into aptamers: an alternative to antibodies in the detection of molecular biomarkers. Int J Mol Sci, 2024. 25(13) : p.6833.
    22. Yang, S., et al., Oligonucleotide aptamer-mediated precision therapy of hematological malignancies. Mol. Ther. Nucleic Acids, 2018. 13(10): p. 164-175.
    23. Vavvas, D. and D.J. D'Amico, Pegaptanib (Macugen): treating neovascular age-related macular degeneration and current role in clinical practice. Ophthalmol Clin North Am, 2006. 19(3): p. 353-360.
    24. Zhuo, Z., et al., Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine. Int J Mol Sci, 2017. 18(10): p.2142.
    25. Sefah, K., et al., Development of DNA aptamers using Cell-SELEX. Nat Protoc, 2010. 5(6): p. 1169-1185.
    26. Vance, S.A. and M.G. Sandros, Zeptomole detection of C-reactive protein in serum by a nanoparticle amplified surface plasmon resonance imaging aptasensor. Sci Rep, 2014. 4(12): p. 5129.
    27. Germer, K., M. Leonard, and X. Zhang, RNA aptamers and their therapeutic and diagnostic applications. Int J Biochem Mol Biol, 2013. 4(1): p. 27-40.
    28. Mo, T., et al., Aptamer-based biosensors and application in tumor theranostics. Cancer Sci, 2022. 113(1): p. 7-16.
    29. Di Mauro, V., et al., Diagnostic and therapeutic aptamers: a promising pathway to improved cardiovascular disease management. Basic Transl Sci, 2024. 9(2): p. 260-277.
    30. Khoshbin, Z., et al., Aptamer-based biosensors: promising sensing technology for diabetes diagnosis in biological fluids. Curr Med Chem, 2023. 30(30): p. 3441-3471.
    31. Liu, S., et al., Translation of aptamers toward clinical diagnosis and commercialization. Biosens Bioelectron, 2022. 208(1): p. 114168.
    32. Jia, X., et al., Identification and multicentric validation of soluble CDCP1 as a robust serological biomarker for risk stratification of NASH in obese Chinese. Cell Rep Med, 2023. 4(11): p. 101257.
    33. Cheng, H.-P., et al., Recent trends and innovations in bead-based biosensors for cancer detection. Sensors, 2024. 24(9): p. 2904.
    34. Váradi, C., C. Lew, and A.S. Guttman, Rapid magnetic bead based sample preparation for automated and high throughput N-glycan analysis of therapeutic antibodies. Anal. Chem, 2014. 86(12): p. 5682-5687.
    35. Matheson, N.J., A.A. Peden, and P.J. Lehner, Antibody-free magnetic cell sorting of genetically modified primary human CD4+ T cells by one-step streptavidin affinity purification. PLoS One, 2014. 9(10): p. e111437.
    36. Casar, B., et al., Blocking of CDCP1 cleavage in vivo prevents Akt-dependent survival and inhibits metastatic colonization through PARP1-mediated apoptosis of cancer cells. Oncogene, 2012. 31(35): p. 3924-3938.
    37. Harrington, B.S., et al., Anti-CDCP1 immuno-conjugates for detection and inhibition of ovarian cancer. Theranostics, 2020. 10(5): p. 2095-2114.
    38. Samarakoon, R., et al., TGF-beta1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60(c-src)/EGFR(Y845) and Rho/ROCK signaling. J Mol Cell Cardiol, 2008. 44(3): p. 527-538.
    39. Weina, K., et al., TGF-β induces SOX2 expression in a time-dependent manner in human melanoma cells. Pigment Cell Melanoma Res, 2016. 29(4): p. 453-458.
    40. You, H., W. Ding, and C.B. Rountree, Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology, 2010. 51(5): p. 1635-1644.
    41. Graham, H., D.J. Chandler, and S.A. Dunbar, The genesis and evolution of bead-based multiplexing. Methods, 2019. 158(1): p. 2-11.
    42. Bladergroen, M.R., et al., Standardized and automated solid-phase extraction procedures for high-throughput proteomics of body fluids. J. Proteomics, 2012. 77(4): p. 144-153.
    43. Liu, P., et al., Performance comparison of streptavidin magnetic beads for epcam expressing cancer cell lines for circulating tumor cell (CTC) enrichment in a flow-through immunomagnetic system. PLoS One, 2025. 20(5): p. e0322375.
    44. Khan, T., et al., CUB Domain-Containing Protein 1 (CDCP1) is a rational target for the development of imaging tracers and antibody-drug conjugates for cancer detection and therapy. Theranostics, 2022. 12(16): p. 6915-6930.
    45. Chen, Z., et al., Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding. Front. Cell Dev. Biol, 2023. 11(6): p. 1091809.
    46. Dhar, P., R.M. Samarasinghe, and S. Shigdar, Antibodies, nanobodies, or aptamers-which is best for deciphering the proteomes of non-model species? Int J Mol Sci, 2020. 21(7): p. 2485.
    47. Liu, G. and J.F. Rusling, COVID-19 antibody tests and their limitations. ACS Sens, 2021. 6(3): p. 593-612.
    48. Thiviyanathan, V. and D.G. Gorenstein, Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl, 2012. 6(11-12): p. 563-73.
    49. Cheng, S., et al., Sensitive detection of small molecules by competitive immunomagnetic-proximity ligation assay. Anal. Chem, 2012. 84(5): p. 2129-2132.
    50. Kumar Kulabhusan, P., B. Hussain, and M. Yüce, Current perspectives on aptamers as diagnostic tools and therapeutic agents. Int. J. Pharm, 2020. 12(7): p. 646.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE