簡易檢索 / 詳目顯示

研究生: 吳振維
Wu, Chen-Wei
論文名稱: 區域地質構造對大規模崩塌發育之影響-以寶來竹林地區為例
The impact of geological structure on the occurrence of large scale landslide: An example from Chulin-Baolai area
指導教授: 林慶偉
Lin, Ching-Weei
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 空載光達大規模崩塌地質構造美瓏山斷層
外文關鍵詞: LiDAR, large scale landslide, geological structure, Meilong Shan fault
相關次數: 點閱:86下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2009年莫拉克風災重創台灣中南部,在山區多處造成面積大於10公頃之大規模崩塌。為了防範類似的事件再次發生,所以需要更加了解影響大規模崩塌之可能因子。以往大規模崩塌的調查與研究著實不易,但近年來透過高精度光達數值地形能夠有效增加大規模崩塌之判釋速度與準確度。又因為大規模崩塌受控於地質因子,故本研究探討區域地質構造對大規模崩塌之影響。
    本研究利用莫拉克風災前(2007)航空照片製作二公尺數值地形模型,配合災後(2010)中央地質調查所所提供的空載光達高精度數值地形模型,針對竹林崩塌比較前後期地形變化。利用航照配合空載光逹高精度數值地形進行崩塌之地形特徵和構造線型判釋,並透過野外調查檢核崩塌判釋結果,以及完成美瓏溪集水區大比例尺路線地質圖。其次,利用不同類型露頭之擦痕資料,嘗試區分崩塌類型滑動面與地質構造類型滑動面,最後綜合討論地質構造與崩塌間的關係。
    潛在大規模崩塌判釋及檢核結果顯示,寶來竹林地區具大規模崩塌地形之特徵的崩塌地共18處,且美瓏溪南岸佈滿潛在大規模崩塌。地質調查方面,確認美瓏山斷層為一位態為(N50˚E,60˚E)、逆衝兼具左移性質,且斷層變形帶超過750公尺的逆衝斷層,利用野外岩性與構造資料,結合擦痕資料與構造線型判釋之結果,劃定美瓏山斷層下界,完成美瓏溪集水區路線地質圖。
    綜合室內判釋與野外工作結果,寶來竹林地區發育大規模崩塌的主因為:美瓏山斷層變形帶使坡面岩體破碎,在巨觀尺度下接近均質,促使潛在大規模崩塌圓弧形底滑面之形成,並因為變形帶之阻水與匯水特性,使坡面孔隙壓增加,降低坡面穩定度,促使崩塌之發生。

    When Typhoon Morakot hit central and southern Taiwan in 2009, it caused large scale landslide with area that is greater than 10 hectares in the mountains. In order to prevent similar incidents from happening again, so we need to understand the factors that impact the large scale landslide. In the past, the investigation of large scale landslide was not easy; however in the recent years, it has been a great progress discovering the usage of high-precision topographic LiDAR that could effectively cut down the time and increase the accuracy of the investigation. Because the geological factors controll the large-scale landslide, this study use the geologic mapping and the investigating of landslide featuring indoor and outdoor to discuss The impact of geological structure on the occurrence of large scale landslide.
    First, With the aerial photos which were taken before the disaster of typhoon Morakot in 2009, the 2m digital elevation model was produced to match with the post-disaster LiDAR digital elevation model in 2010, provided by Central Geological Survey MOEA, in order to compare the topography before and after the disaster. Second, we use aerial photos and LiDAR digital elevation model to interpret the structural lineament and the feature of landslide-topography. Third, we do the field works to verificate the interpretation indoor and make the geological map of the Meilong Shan watershed. Fourth, we use the slickensildes, which were from different types of outcrop, to distinguish between the sliding surface of landslides and geological structures. Finally, we combined all the works to discuss the relationship between geological structures and landslides.
    The investigation of potentially large scale landslide shows that there is eighteen sites of potentially large scale landslide in Baolai-Chulin area. Moreover, on the southern bank of Meilong River is covered with potential large scale landslide. In the field works, Meilong Shan fault is confirmed as a thrust fault which its attitude is (N50˚E, 60˚E), and the width of fault deformation zone is over 750 meters. This study combined the field data that contain the lithological data and structural data and the data of slikenside and the structual lineament to decide the boundary of Meilong Shan fault, and to complete the large scale geological map of Meilong Shan watershed.
    Combining the results of the indoor works and field works, we think that the reason of the formation of large scale landslide in Baolai-Chulin area was the Meilong Shan fault deformation zone. Becauce Meilong Shan fault deformation zone, which fragments the rocks on the slop, cause the generating of listric detachment. And the deferent permeability of the deformation zone increases the pore pressure, and reduces the stability of slope, thereby promoting a the development of large scale landslide.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 地理位置及地形概述 2 1.3 區域地質 4 第二章 前人研究 6 2.1 大規模崩塌 6 2.2 斷層帶組構與特性 7 2.3 重力作用與地質構造產生之岩體組構比較 10 第三章 研究方法 12 3.1 研究方法與流程 12 3.2 室內影像判釋 12 3.2.1 崩塌特徵判釋 13 3.2.2 構造線型判釋 15 3.2.3 莫拉克災前災後之崩塌情形比較 17 3.3 野外調查與檢核 17 3.3.1 崩塌特徵檢核 17 3.3.2 路線地質圖測繪 17 3.3.3 擦痕資料蒐集及統計分析 18 第四章 研究結果 19 4.1 室內判釋工作成果 19 4.1.1 崩塌地形特徵判釋 19 4.1.2 構造線型判釋 21 4.2 野外工作成果 23 4.2.1 崩塌特徵野外檢核結果 23 4.2.2 路線地質圖測繪結果 29 4.2.3 擦痕量測記錄 46 4.3 研究區域莫拉克風災前後地形變化 48 4.3.1 莫拉克風災前數值地形製作 48 4.3.2 莫拉克風災前後期地形變化 51 第五章 討論 54 5.1 室內判釋與野外工作比較 54 5.1.1 崩塌線型判釋 54 5.1.2 構造線型判釋 54 5.2 莫拉克風災前後地形討論 55 自製數值地形的問題討論 55 莫拉克風災前後地形高程差之應用 56 5.3 區域地質構造與大規模崩塌之關係 56 5.3.1 崩塌滑動帶與斷層變形帶的辨識 56 5.3.2 美瓏山斷層對大規模崩塌發育之影響 57 5.4 美瓏山斷層之特性 58 5.4.1 美瓏山斷層之野外結果 58 5.4.2 美瓏山斷層之滑移特性 58 5.4.3 美瓏山斷層之南北延伸推測 59 第六章 結論 61 參考文獻 63 附錄 67

    千木良雅弘,2011,大規模崩塌潛感區,科技圖書股份有限公司,共227頁。
    林偉雄,1999,荖濃溪斷層作為台灣南部新、古第三系界限斷層的檢討,經濟部中央地質調查所彙刊,第十二號,第1-24頁。
    何春蓀,1997,台灣地質概論第二版-台灣地質圖說明書,經濟部中央地質調查所出版,共163 頁。
    宋國城、林慶偉、林偉雄、林文正,2000,甲仙圖幅及說明書,五萬分之一臺灣地質圖,第五十一號,經濟部中央地質調查所,共57 頁。
    劉哲欣、吳亭燁、陳聯光、林聖琪、林又青、陳樹群、周憲德,2011,臺灣地區重大岩體滑動案例之土方量分析,中華水土保持學報,第四十二卷第二期,第150-159頁。
    陳樹群、翁愷翎、吳俊鋐,2010,玉峰溪集水區崩塌特性與崩塌體積之探討,中華水土保持學報,第四十一卷第三期,第217-229頁。
    張慧中,1986,臺灣南部潮州斷層北段之新期構造研究。臺灣大學地質學研究所,碩士論文,第75-89頁。
    Agliardi, F., Crosta, G., & Zanchi, A., 2001, Structural constraints on deep-seated slope deformation kinematics, Engineering Geology, 59(1), pp. 83-102.
    Agliardi, F., Crosta, G. B., Frattini, P., & Malusà, M. G., 2013, Giant non-catastrophic landslides and the long-term exhumation of the European Alps, Earth and Planetary Science Letters, 365, pp. 263-274.
    Allmendinger, R.W., 2011, FaultKin v.5.2 (shareware software,ftp://www.geo.cornell.edu/pub/rwa), Dept. of Geological Sciences,Cornell University, Ithaca.
    Aydin, A., and Johnson, A. M., 1978, Development of faults as zones of deformation bands and as slip surfaces in sandstone, In Rock Friction and Earthquake Prediction, Birkhäuser Basel, pp. 931-942.
    Bovis, M.J., 1982. Uphill facing (antislope) scarps in the CoastMountains, southwest British Columbia, Geological Society of America Bulletin, 93, pp. 804-812.
    Caine, J.S., Evans, J.P., Forster, C.B., 1996, Fault zone architecture and permeability structure, Geology, Vol. 24, No. 11, pp. 1025-1028.
    Chester, F.M., Evans, J.P., Biedel, R.L., 1993, Internal structure and weakeningmechanisms of the San Andreas Fault, Journal of Geophysical research,Vol. 98, No. B1, pp.771-786.
    Chigira, M., 1992, Long-term gravitational deformation of rocks by mass rock creep, Engineering Geology, 32(3), pp. 157-184.
    Chigira, M., Hariyama, T., & Yamasaki, S., 2013, Development of deep-seated gravitational slope deformation on a shale dip-slope: Observations from high-quality drill cores, Tectonophysics.
    Crosta, G. B., Frattini, P., & Agliardi, F., 2013, Deep seated gravitational slope deformations in the European Alps, Tectonophysics.
    Higgins, M.W., 1971, Cataclastic rocks, Professional Paper of the United States, Geological Survey, 687, pp. 1-97.
    Jahn, A., 1964. Slopes morphological features resulting from gravitation, Zeitschrift für Geomorphologie, 5, pp. 59-72.
    Li, Y.Y., Yi, D.C., Lin, C.W., 2012, The geologic environment and triggering mechanism of the catastrophic landslide at Hsiaolin Village, Kaohsiung, Western Pacific Earth Sciences, 12(1), pp. 1-20.
    Mahr, T., 1977, Deep—Reaching gravitational deformations of high mountain slopes, Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 16(1), pp. 121-127.
    Mitra, G., Ismat, Z., 2001, Microfracturing associated with reactived fault zones andshear zones: what can it tell us about deformation history?, The Natureand Tectonic Significance of Fault Zone Weakening, Geological SocietyLondon, Special Publication, 186, pp. 342.
    Patton, F. D., Hendron, Jr. A. J., 1974, General report on mass movements, 2nd International Congress IAEG, vol. 5, GR1-GR57.
    Radbruch-Hall D. H., Varnes D. J., Savage W. Z., 1976, Gravitational spreading of steep-sided ridges (“Sackung”) in western United States,Bulletin of the International Association of Engineering Geology, 14, pp. 23–35
    Radbruch-Hall D. H., Varnes D. J., Colton R. B., 1977, Gravitational spreading of steep-sided ridges “Sackung” in Colorado, Journal of Research of the U. S. Geological Survey, 5, pp. 359–363
    Roering, J. J., Kirchner, J. W., Dietrich, W. E., 2004, Characterizing structural and lithologic controls on deep-seated landsliding: Implications for topographic relief and landscape evolution in the Oregon Coast Range, USA, Geological Society of America Bulletin, pp.1-37.
    Scholz, C. H., 1990, The mechanics of earthquakes and faulting, Cambridge University Press, New York, pp. 115–132.
    Sibson, R.H., 1977, Fault rocks and fault mechanisms, Journal of the Geological Society of London, Vol. 133, pp. 191-213.
    Sibson, R.H., 1996. Structural permeability of fluid-driven fault-fracture meshes, Journal of Structural Geology, 18(8), pp. 1031-1042.
    Tabor R. W., 1971, Origin of ridge-top depressions by large scale creep in the Olympic Mountains, Washington, Geological Society of America Bulletin, 82, pp. 1811–1822.
    Ter-Stepanian, G.I., 1966. Types of depth creep of slopes in rock masses, Proc. 1st Congress of International Society for Rock Mechanics, Lisbon, 2, pp. 157-160.
    Yen and Tien, P.L., 1986, Chaochou Fault in southern Taiwan, Proceedings of the Geological Society of China, 29, pp.9-22.
    Varnes D. J., 1978, Slope movement types and processes, Landslides, Analysis and Control, Spec. Rep., 176, Proceedings of the National Academy of Sciences, Washington D.C., pp. 11–35.

    下載圖示 校內:2018-09-05公開
    校外:2018-09-05公開
    QR CODE