簡易檢索 / 詳目顯示

研究生: 顏志仲
Yen, Chih-Chung
論文名稱: 結合自動對焦裝置之光纖式光學同調斷層掃描術之研究
Fiber Type of Optical Coherence Tomography with an Auto-Focus Device
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 96
中文關鍵詞: 自動對焦裝置光學同調性斷層掃描術折射係數厚度
外文關鍵詞: Optical Coherence Tomography (OCT), Auto-Focus Device
相關次數: 點閱:77下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   光學同調性斷層攝影術是近年來利用低同調干涉術所發展相當快速的一種非侵入式光學造影方法。其造影的方式為利用同調光子閘截技術來取得具有影像資訊的光子。近年來,此技術藉由其量測光程差的能力,以此用來做為量測樣品折射率和厚度的有用工具。

      本實驗將針對一般光學斷層掃描術的架構加以改良,除了以光纖式的結構降低外界環境的干擾之外,同時結合一商業化之自動對焦裝置與光纖式光學同調性斷層攝影術以降低因樣本或是樣本平台的輕微震動造成的量測誤差,並以同時量測單層樣本的折射係數與厚度。最後以自製的樣本來測試本系統的可行性。

      最後,提出一種新式的偏振式光學同調斷層掃描術,並利用基因演算法來有高準確的量測出待測物之雙折變與光軸方向之特性。最後以模擬數據來測試本系統的可行性。

     Optical coherence tomography (OCT) is an optical imaging technique that allows high-resolution noninvasive cross-sectional imaging of tissue microstructure. Recently, there have been reports of the measurement of refractive index n and thickness t by the use of OCT combined with confocal optics.

     In this study, we develop a new optical fiber type of OCT with a commercial auto-focus device to simultaneously measure refractive index and thickness of a single-layer for demonstration. An auto-focus device is implemented to diminish the measurement error resulting from the slight vibration of the sample or sample stage. As compared to the conventional one, the new OCT setup is easily immune to the vibration effects. The system is demonstrated by two home-made samples.

     In the end, we present a new polarization-sensitive OCT (PS-OCT), and make use of genetic algorithm to measure the optical axis, birefringence of the sample precisely. The system is demonstrated by simulation.

    Abstract I 中文摘要 II 致謝 III Table of Contents IV List of Figures VIII List of Tables XI Chapter 1 Introduction 1 1.1 The Destinations and Motivations of the Research 1 1.2 Historical review of OCT and OCT in Measure Refractive Index 2 1.3 Overview of Chapters 4 Chapter 2 Theoretical Analysis 10 2.1 Principle of An OCT system 10 2.1.1 Low-Coherence Interferometry 11 2.1.2 Resolution of OCT System 14 2.1.2.1 Axial Resolution 14 2.1.2.2 Lateral Resolution 16 2.1.3 Sensitivity 17 2.2 Light in Bulk Matter 18 2.2.1 Scattering and Absorption 18 2.2.2 Dispersion and Refractive Index 20 2.2.3 The Phase Velocity and the Group Velocity 21 2.2.4 Discussion 22 2.3 Determine the Refractive Index and Thickness of the single-layer Sample 23 2.3.1 The Structure of the Measure System 24 2.3.2 Principle of Measurement 24 2.3.3 Discussion 25 2.4 Signal Modulation and Demodulation Techniques by Using Only Scanning Stage 25 2.4.1 Theory 26 2.4.2 Simulation by Math Software MATLAB 28 2.4.3 Experiment 28 2.4.4 Discussion 28 2.5 Auto-Focus Theory 29 2.5.1 Introduction 29 2.5.2 The Structure and Function of Commercial DVD Pickup Head 29 2.5.3 The Sensing in Focus Error 30 2.5.4 The Sensing in Tracking Error 31 2.5.5 Discussion 32 Chapter 3 New OCT to Measure Refractive Index and Thickness of a Single-Layer Sample 43 3.1 New Structure Without Auto-Focus Device 43 3.2 New Structure With Auto-Focus Device 44 3.3 Discussion 47 Chapter 4 Experiment with New Structure 52 4.1 Introduction 52 4.2 Experiment Hardware and Software 52 4.2.1 System Configuration 52 4.2.2 Signal Process and Peak Detection 53 4.3 Experimental steps 54 4.3.1 Combine with Auto-Focus Device 54 4.3.2 Adjust Focal Point on the Surface of the Reference Plane 55 4.3.3 Adjust Focal Point on the Top Surface of the Sample 55 4.3.4 Moving the Scanning Stage and Record Data from Photodetector 55 4.3.5 Signal Process and Result 55 4.4 Experimental Sample – D263T Glass 56 4.4.1 Result of the Single-layer Sample 56 4.4.2 Result of the Single-layer Sample With Auto-Focus Device 56 4.5 Experimental Sample - Twist Nematic Liquid Crystal Test Cell 57 4.6 Conclusion and Discussion 58 Chapter 5 Polarization-Sensitive Optical Coherence Tomography 73 5.1 Introduction 73 5.2 Theoretical Analysis 75 5.2.1 Polarization-Sensitive Optical Coherence Tomography 75 5.2.2 New PS-OCT to Measure Refractive Index, Thickness, Optic Axis Orientation and Birefringence of a Single-Layer Sample 76 5.2.3 Experimental method 77 5.3 Analysis in Simulation 78 5.3.1 Fix two parameters as theoretical value and vary one parameter 79 5.3.2 Vary all three parameters 80 5.4 Discussion and Conclusion 80 Chapter 6 Conclusion and Suggestions 87 6.1 Conclusions and Discussions 87 6.2 Suggestions 88 6.2.1 Powerful Integration with Auto-Focus Device 88 6.2.2 Take Dispersion into Account 88 6.2.3 Powerful Instruments 88 6.2.4 Optimal Interferometer Designs 89 6.2.5 Measurement in Three Dimension 89 Bibliography 90 Autobiography 96

    Abramowitz, M. and Stegum, I.A., Handbook of mathematical function, Washington DC:Nat. But. Standards., 1963.
    Beaurepaire, E., Boccara, A.C., Lebec, M., Blanchot, L. and Saint-Jalmes, H., “Full-field optical coherence tomography,” Opt. Lett., vol. 23, pp. 244-246, 1998.
    Bouma, B.E. and Tearney, G.J., Handbook of optical coherence tomography, Marcel Dekker, Inc., 2002
    Brigham, E.O., The fast fourier transform and its applications, Prentice Hall., 1988.
    Cheong et al., “A review of optical properties of biological tissues,” IEEE Journal of Quantum Electronics, vol. 26, pp. 2166-2184, 1990.
    Chinn, S.R. and Swanson, E.A., “Blindness limitation in optical coherence domain reflectometry,” Elec. Lett., vol. 29, pp. 2025-2027, 1993.
    Cohen, D.K., Gee, W.H., Ludeke M., and Lewkowicz, J., “Auto-focus control: the astigmatic lens approach,” Applied Optics, vol. 23, pp. 565-570, 1984.
    Dave, D.P., Akkin, T., and Milner. T.E., “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefirngence,” Opt. Lett., vol. 28, pp. 1775-1777, 2003.
    de Boer J.F., Milner, T.E., van Gemert M.J.C., and Nelson, J.S., “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett., vol. 22, pp. 934-936, 1997.
    Fukano, T. and Yamaguchi, I., “Simultaneous measurement of thickness and refractive indices of multiple layers by a low coherence confocal microscope,” Opt. Lett., vol. 21, pp. 1942-1944, 1996.
    Goodman, J.W., Statistical optics, New York, NY: John Wiley and Sons: 1985.
    Groot, P.D., “Chromatic dispersion effects in coherent absolute ranging,” Opt. Lett., vol. 17, pp. 898-900, 1992.
    Hartl, I., Li, X.D., Chudoba, C., Ghanta, R.K., Ko, T.H., Fujimoto, J.G., Ranka, J.K. and Windleler, R.S., “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett., vol. 26, pp. 608-610, 2001.
    Haruna, M., Ohmi, M., Mitsuyama, T., Tajiri, H., Maruyama, H., and Hashimoto, M., "Simultaneous measurement of the phase and group indices and thickness of transparent plates by low-coherence interferometry", Opt. Lett., vol. 23, pp. 966-968, 1998.
    Hecht, Eugene., Optics, Addison Wesley, third edition, 1998.

    Hee, M.R., Huang, D., Swanson, E.A., and Fujimoto, J.G., “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B., vol. 9, pp. 903-908, 1992.
    Hee, M.R., Izatt, J.A., Swanson, E.A., Huang, D., Schuman, J.S., Lin, C.P., Puliafito, C.A., and Fujimoto, J.G., “Optical coherence tomography for ophthalmic imaging,” IEEE Eng. Med. Bio., pp. 67-76, 1995.
    Hitzenberger, C., Goetzinger, E., Sticker, M., Pircher, M., and Fercher, A., “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Optics Express. vol. 9, pp. 780-790, 2001.
    Hoeling, B.M., Fernandez, A.D., Haskell, R.C., Huang, E., Myers, W.R., Petersen, D.C., Ungersma, S.E., Wan, G., and Williams, M.E., “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Optics Express. vol. 6, pp. 136-146, 2000.
    Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., and Fujimoto, J.G. “Optical coherence tomography,” Science, vol. 254, pp. 1178–1181, 1991.
    Izatt, J.A., Hee, M.R., Owen, G.M., Swanson, E.A., and Fujimoto, J. G.,“Optical coherence microscopy in scattering media,” Opt. Lett., vol. 19, pp. 590–592, 1994.
    Izatt, J.A., Kulkarni, M.D., Wang, H.W., Kobayashi, K., and Sivak, M. V.,“Optical coherence tomography and microscopy in gastrointestinal tissues,”IEEE J. Select. Topics Quantum Electron., vol. 2, pp. 1017–1028, 1996.
    Jonathan E.R., Jennifer A.K., Siavash Y., Andrew M.R. and Josegp A.I., “Simplitied method for polarization-sensitive optical coherence tomography ,” Opt. Lett., vol. 26, pp. 1069–1071, 2001.
    Kam, Z., Agard, D.A., and Sedat, J.W., “Three-dimensional microscopy in thick biological samples: A fresh approach for adjusting focus and correcting spherical aberration,” Bioimaging, vol. 5, pp. 40-49, 1997.
    Kwong, K.F., Yankelevich, D., Chu, K.C., Heritage, J.P., and Dienes, A., “400-Hz mechanical scanning optical delay ilne,” Opt. Lett., vol. 18, pp.558-560, 1993.
    Lo, Y.L., Kuo, C.I., Chuang, C.H., and Yan, Z.Z., “Optical coherence tomography system with no high-precision scanning stage and Sstage controller,” Applied Optics, vol. 43, pp. 4142-4149, 2004.
    Lu, C.W., “Study of optical doppler Ccoherence tomography,” National Taiwan University Master Thesis, 2001.
    Maruyama, H., Inoue, S., Mitsuyama, T., Ohmi, M., and Haruna, M., “Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness,” Appl. Opt., vol. 41, pp. 1315–1322, 2002.
    Nishi, H., Itadani, T., Ohmi, M., and Haruna, M., “Tomography-based measurement of refractive index and thickness profiles by the low coherence interferometry,” 16th Int’l Conf. Opt. Fiber Sensors (OFS-16), pp. 764-767, 2003.
    Ohmi, M., ohnishi, Y., Yoden, K., and Haruna, M., “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng., vol. 47, pp. 1266–1270, 2000.
    Pedrotti, F.L. and Pedrotti, L.S., Introduction to Optics, Prentice-Hall., 1996.
    Profio, A.E. and Doiron, D.R.. “ Transport of light in tissue in photodynamic therapy of cancer,” Photochemistry and Photobiology, vol. 46, pp. 591-599, 1987.
    Rollins, A.E. and Izatt, J.A., “Optimal interferometer designs for optical coherence tomography,” Opt. Lett., vol. 21, pp. 1484-1486, 1999.
    Roth J.E., Kozak J.A., Yazdanfar S., Rollins. A.M., and Izatt, J.A., “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett., vol. 26, pp. 1069-1071, 2001.
    Schmitt, J.M., “Optical coherence tomography (OCT) : A Review,” IEEE J. Select. Topics Quantum Electron., vol. 5, pp. 1205–1215, 1999.
    Swanson, E.A., Huang, D., Hee, M.R., Fujimoto, J.G., Lin, C.P., and Puliafito, C.A., “High-speed optical coherence domain reflectometry,” Opt. Lett., vol. 17, pp. 151-153, 1992.
    Takada, K., Yokohama, I., Chida, K., and Noda, J., “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt., vol. 26, pp. 1603–1606, 1987.
    Tearney, G.J., Bouma, B.E., and Fujimoto, J.G., “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett., vol. 22, pp. 1811-1813, 1997.
    Tearney, G.J., Bouma, B.E., Boppart, S.A., Golubovic, B.E., Swanson, A., and Fujimoto, J.G., “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett., vol. 21, pp.1408-1410, 1996.
    Tearney, G.J., Brezinski, M.E., Southern, J.F., Bouma, B.E., Hee, M.R., and Fujimoto, J.G., “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett., vol. 20, pp. 2258–2261, 1995.
    Vabre, L., Dubois, A., and Boccara, A.C., “Thermal-light full-field optical coherence tomography,” Opt. Lett., vol. 27, pp. 530-532, 2002.
    Yoden, K., Ohmi, M., Ohnishi, Y., Kunizawa, N., and Haruna, M., “An approach to optical reflection tomography along the geometrical thickness,” Opt. Rev., vol. 7, pp.402-405, 2000.
    Youngquist, R., Carr, C.S., and Davies, D.E.N., “Optical coherence domain reflectometry: A new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158-160, 1987.
    李冠卿, 近代光學, 聯經出版事業有限公司, 1988.

    下載圖示 校內:2008-07-13公開
    校外:2008-07-13公開
    QR CODE