| 研究生: |
林巧欣 Lin, Chiao-Hsin |
|---|---|
| 論文名稱: |
利用移頻聲音療法於慢性耳鳴治療 A Sound Therapy Method with Pitch Modulation for Treatment of Chronic Tinnitus |
| 指導教授: |
杜翌群
Du, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 慢性耳鳴 、聲音治療 、波型相似疊加演算法 、腦電圖 、移頻聲音療法 、居家型智慧耳鳴治療耳機 、不匹配負向波 |
| 外文關鍵詞: | Chronic tinnitus, Sound therapy, Waveform Similarity Overlap-Add, Pitch modulation sound therapy, EEG, Home-based intelligent therapeutic headphones, Mismatch negativity |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聲音治療為目前臨床中常使用的慢性耳鳴療法之一,且多以白噪音為主。目的為幫助患者放鬆,以及調節因耳鳴引起的異常神經元活動。然而白噪音的體驗感受不佳,導致在臨床中並不盛行。有鑑於此,本研究透過重採樣實現變調搭配波型相似疊加演算建立移頻聲音療法 (PMST),其將耳鳴頻率鑲嵌在特定音樂當中達到遮蔽效果。為驗證本方法可行性,本研究設計四種腦波實驗,分別為比較白噪音與PMST刺激對於健康人大腦放鬆評估;健康人與耳鳴病患間的腦波特徵差異;短期PMST治療前後腦波特徵變化;紀錄30天PMST治療前後的腦波與主觀問卷分析。實驗一結果顯示相較於白噪音,PMST更能夠反映出大腦放鬆特徵α波上升 (p=0.0518)以及β波顯著下降 (p<0.05),反之白噪音則相反;實驗二發現耳鳴患者相較於健康人的δ頻帶活動異常,α功率減少且全腦網絡明顯增加;實驗三在短期PMST治療使耳鳴患者的δ、α變化趨近於健康人,θ反映出較好的聽覺記憶;實驗四在長期治療後,發現全腦網顯著下降 (p<0.05),特別是在雙側顳葉;THI分數顯示患者耳鳴由重度下降至中度;VAS量表平均下降4.7;李克特5級PMST治療體驗量表滿意度超過4分,PMST提供了慢性耳鳴病患長期聲音治療的新穎選擇。基於上述成果,本研究使用OpenBCI Cyton感測晶片開發居家型智慧耳鳴治療耳機,並設計聽覺不匹配負向波(MMN)實驗,驗證此穿戴式腦電圖感測晶片可行性,結果顯示在刺激後的0.15 s中發現MMN,符合聽覺刺激機制,該輕量型生醫感測晶片展示未來產品化方面的潛力。
Sound therapy is one of the commonly used treatments for chronic tinnitus in clinical practice, mostly utilizing white noise (WN). The aim is to help patients relax and regulate the abnormal neuronal activities caused by tinnitus. However, the experience of WN is often unpleasant, leading to its limited prevalence in clinical settings. In view of this, our study developed a Pitch Modulation Sound Therapy (PMST) by implementing resampling techniques to achieve pitch modulation combined with Waveform Similarity Overlap-Add. This method embeds tinnitus frequency into specific music to achieve a masking effect. To verify the feasibility of this treatment, we designed four EEG experiments: relaxed evaluation of WN and PMST comparison of EEG between healthy individuals and tinnitus patients, EEG characteristics before and after short-term PMST treatment, recording and analyzing EEG and subjective questionnaire responses before and after 30 days of PMST treatment. Results of the first experiment indicated that compared to WN, PMST showed more effectively reflected brain relaxation with a significant increase in α (p=0.0518) and a significant decrease in β (p<0.05), while the opposite was observed for WN. The second experiment found abnormal δ activity, reduced α power, and significantly increased brain network activity in tinnitus patients compared to healthy individuals. The third experiment shows that short-term PMST treatment causes δ and α changes in tinnitus patients to approach those of healthy individuals. θ reflects the normalization of auditory memory retrieval. The fourth experiment revealed a significant reduction in brain network activity (p<0.05) after long-term treatment, particularly in the temporal lobes; THI scores indicate a reduction from severe to moderate; the VAS scale shows an average decrease of 4.7; and the Likert scale for PMST treatment satisfaction exceeded 4 points. PMST provides a novel long-term sound therapy option for chronic tinnitus patients. Based on these results, we use the OpenBCI Cyton biosensing chip to develop home-based intelligent therapeutic headphones. To verify the feasibility of this wearable EEG biosensing chip. We design an auditory mismatch negativity (MMN) experiment. The result shows the presence of MMN at 0.15 seconds, consistent with auditory stimulus mechanisms. Demonstrate the potential for future product commercialization of this lightweight biomedical sensing chip.
1. Shore, S.E., L.E. Roberts, and B. Langguth, Maladaptive plasticity in tinnitus—triggers, mechanisms and treatment. Nature Reviews Neurology, 2016. 12(3): p. 150-160.
2. Jarach, C.M., et al., Global prevalence and incidence of tinnitus: A systematic review and meta-analysis. JAMA neurology, 2022.
3. Tang, D., H. Li, and L. Chen, Advances in understanding, diagnosis, and treatment of tinnitus. Hearing Loss: Mechanisms, Prevention and Cure, 2019: p. 109-128.
4. Shargorodsky, J., G.C. Curhan, and W.R. Farwell, Prevalence and characteristics of tinnitus among US adults. The American journal of medicine, 2010. 123(8): p. 711-718.
5. Li, Y.-L., et al., Sleep disturbance and psychological distress in adult patients with tinnitus. Journal of the Formosan Medical Association, 2022. 121(5): p. 995-1002.
6. Tunkel, D.E., et al., Clinical practice guideline: tinnitus. Otolaryngology–Head and Neck Surgery, 2014. 151(2_suppl): p. S1-S40.
7. Wang, H., et al., The state of the art of sound therapy for subjective tinnitus in adults. Therapeutic Advances in Chronic Disease, 2020. 11: p. 2040622320956426.
8. Adamchic, I., et al., Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation. Human brain mapping, 2014. 35(5): p. 2099-2118.
9. Husain, F.T., Neural networks of tinnitus in humans: elucidating severity and habituation. Hearing research, 2016. 334: p. 37-48.
10. Holtze, B., et al., Ear-EEG measures of auditory attention to continuous speech. Frontiers in Neuroscience, 2022. 16: p. 539.
11. Han, B.I., et al., Tinnitus update. Journal of clinical neurology (Seoul, Korea), 2021. 17(1): p. 1.
12. Piccirillo, J.F., T.L. Rodebaugh, and E.J. Lenze, Tinnitus. Jama, 2020. 323(15): p. 1497-1498.
13. Ubbink, S.W., et al., Transcanal sound recordings as a screening tool in the clinical management of patients with pulsatile tinnitus: A pilot study of twenty patients with pulsatile tinnitus eligible for digital subtraction angiography. Clinical Otolaryngology, 2019. 44(3): p. 452.
14. Lyu, A.-R., et al., Radiologic features of vascular pulsatile tinnitus–suggestion of optimal diagnostic image workup modalities. Acta Oto-Laryngologica, 2018. 138(2): p. 128-134.
15. Landry, E.C., et al., Systematic review and network meta-analysis of cognitive and/or behavioral therapies (CBT) for tinnitus. Otology & Neurotology, 2020. 41(2): p. 153-166.
16. Kleinjung, T. and B. Langguth, Avenue for future tinnitus treatments. Otolaryngologic Clinics of North America, 2020. 53(4): p. 667-683.
17. Phillips, J.S. and D. McFerran, Tinnitus retraining therapy (TRT) for tinnitus. Cochrane database of systematic reviews, 2010(3).
18. Attarha, M., J. Bigelow, and M.M. Merzenich, Unintended consequences of white noise therapy for tinnitus—otolaryngology's cobra effect: a review. JAMA Otolaryngology–Head & Neck Surgery, 2018. 144(10): p. 938-943.
19. Waechter, S., Association between hearing status and tinnitus distress. Acta oto-laryngologica, 2021. 141(4): p. 381-385.
20. Hoare, D.J., et al., Sound therapy for tinnitus management: practicable options. Journal of the American Academy of Audiology, 2014. 25(01): p. 062-075.
21. Vernon, J., Attempts to relieve tinnitus. Ear and Hearing, 1977. 2(4): p. 124-131.
22. Hanley, P.J. and P.B. Davis, Treatment of tinnitus with a customized, dynamic acoustic neural stimulus: underlying principles and clinical efficacy. Trends in Amplification, 2008. 12(3): p. 210-222.
23. Argstatter, H., et al., The effectiveness of neuro-music therapy according to the Heidelberg model compared to a single session of educational counseling as treatment for tinnitus: a controlled trial. Journal of Psychosomatic Research, 2015. 78(3): p. 285-292.
24. Neff, P., et al., 10 Hz amplitude modulated sounds induce short-term tinnitus suppression. Frontiers in Aging Neuroscience, 2017. 9: p. 130.
25. Zhang, J., et al., Switching tinnitus-on: Maps and source localization of spontaneous EEG. Clinical Neurophysiology, 2021. 132(2): p. 345-357.
26. Salvi, R.J., J. Wang, and D. Ding, Auditory plasticity and hyperactivity following cochlear damage. Hearing research, 2000. 147(1-2): p. 261-274.
27. Munjal, T., et al., Treatment Tone Spacing and Acute Effects of Acoustic Coordinated Reset Stimulation in Tinnitus Patients. Frontiers in Network Physiology, 2021. 1: p. 734344.
28. Newman, C.W., G.P. Jacobson, and J.B. Spitzer, Development of the tinnitus handicap inventory. Archives of Otolaryngology–Head & Neck Surgery, 1996. 122(2): p. 143-148.
29. Zeman, F., et al., Tinnitus handicap inventory for evaluating treatment effects: which changes are clinically relevant? Otolaryngology--Head and Neck Surgery, 2011. 145(2): p. 282-287.
30. Ibarra-Zarate, D. and L.M. Alonso-Valerdi, Acoustic therapies for tinnitus: The basis and the electroencephalographic evaluation. Biomedical Signal Processing and Control, 2020. 59: p. 101900.
31. Zhang, J., et al., Differences in clinical characteristics and brain activity between patients with low-and high-frequency tinnitus. Neural Plasticity, 2020. 2020.
32. Mühlnickel, W., et al., Reorganization of auditory cortex in tinnitus. Proceedings of the National Academy of Sciences, 1998. 95(17): p. 10340-10343.
33. Wang, H., et al., A pilot study of EEG source analysis based repetitive transcranial magnetic stimulation for the treatment of tinnitus. PLoS One, 2015. 10(10): p. e0139622.
34. Lanting, C., E. De Kleine, and P. Van Dijk, Neural activity underlying tinnitus generation: results from PET and fMRI. Hearing research, 2009. 255(1-2): p. 1-13.
35. Adamchic, I., et al., Acute effects and after-effects of acoustic coordinated reset neuromodulation in patients with chronic subjective tinnitus. NeuroImage: Clinical, 2017. 15: p. 541-558.
36. Cuevas-Romero, A.R., et al., an Electroencephalography-based database for studying the effects of acoustic therapies for tinnitus treatment. Scientific Data, 2022. 9(1): p. 500.
37. Zhang, X., et al., Correlation analysis of EEG brain network with modulated acoustic stimulation for chronic tinnitus patients. IEEE transactions on neural systems and rehabilitation engineering, 2020. 29: p. 156-162.
38. Feng, T., et al., Efficacy of an Integrative Treatment for Tinnitus Combining Music and Cognitive-Behavioral Therapy—Assessed With Behavioral and EEG Data. Frontiers in Integrative Neuroscience, 2020. 14: p. 508055.
39. Verhelst, W. and M. Roelands. An overlap-add technique based on waveform similarity (WSOLA) for high quality time-scale modification of speech. in 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing. 1993. IEEE.
40. Driedger, J. and M. Müller, A review of time-scale modification of music signals. Applied Sciences, 2016. 6(2): p. 57.
41. King, R.O., et al., The effect of auditory residual inhibition on tinnitus and the electroencephalogram. Ear and Hearing, 2021. 42(1): p. 130-141.
42. Kropotov, J.D., Methods: neuronal networks and event-related potentials. Quantitative EEG, Event-Related Potentials and Neurotherapy, 2009: p. 325-365.
43. Delorme, A. and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 2004. 134(1): p. 9-21.
44. Vanneste, S., et al., Neuronal correlates of maladaptive coping: an EEG-study in tinnitus patients. PLoS One, 2014. 9(2): p. e88253.
45. Alonso, J., et al., Stress assessment based on EEG univariate features and functional connectivity measures. Physiological measurement, 2015. 36(7): p. 1351.
46. Kim, J.-y., et al., Alteration of functional connectivity in tinnitus brain revealed by resting-state fMRI?: a pilot study. International journal of audiology, 2012. 51(5): p. 413-417.
47. Weisz, N., et al., Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS medicine, 2005. 2(6): p. e153.
48. Müller, N., et al., rTMS induced tinnitus relief is related to an increase in auditory cortical alpha activity. PloS one, 2013. 8(2): p. e55557.
49. Yang, K., et al., High gamma band EEG closely related to emotion: evidence from functional network. Frontiers in human neuroscience, 2020. 14: p. 89.
50. Yellamsetty, A. and G.M. Bidelman, Low-and high-frequency cortical brain oscillations reflect dissociable mechanisms of concurrent speech segregation in noise. Hearing research, 2018. 361: p. 92-102.
51. De Ridder, D., et al., Thalamocortical dysrhythmia: a theoretical update in tinnitus. Frontiers in neurology, 2015. 6: p. 124.
52. Adjamian, P., et al., Neuromagnetic indicators of tinnitus and tinnitus masking in patients with and without hearing loss. Journal of the Association for Research in Otolaryngology, 2012. 13: p. 715-731.
53. Jacobs, J., et al., EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making. Neuroimage, 2006. 32(2): p. 978-987.
54. Hölle, D. and M.G. Bleichner, Recording brain activity with ear-electroencephalography. JoVE (Journal of Visualized Experiments), 2023(193): p. e64897.
55. Knierim, M.T., C. Berger, and P. Reali, Open-source concealed EEG data collection for Brain-computer-interfaces-neural observation through OpenBCI amplifiers with around-the-ear cEEGrid electrodes. Brain-Computer Interfaces, 2021. 8(4): p. 161-179.
56. Kidmose, P., D. Looney, and D.P. Mandic. Auditory evoked responses from Ear-EEG recordings. in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012. IEEE.
57. Näätänen, R., et al., The mismatch negativity (MMN): towards the optimal paradigm. Clinical neurophysiology, 2004. 115(1): p. 140-144.
校內:2027-07-31公開