簡易檢索 / 詳目顯示

研究生: 劉昊
Liu, Hau
論文名稱: 脈動式管流之初始不穩定現象探討
The study of the initial unstable disturbances in pulsating pipe flow
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 脈動式管流不穩定擾動EMDHHT微機電熱膜感測器
外文關鍵詞: pulsating pipe flow, unstable disturbance, Empirical Mode Decomposition, Hilbert-Huang transformation, MEMS thermal-film sensor
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討脈動式管流中之初始不穩定擾動現象,利用熱線測速儀量測流場之速度,並搭配實驗室製作之熱膜感測器沿著展向方向黏貼,橫跨 40° 的範圍。並利用Hilbert-Huang transform來計算不穩定擾動之特徵頻率。此外,利用熱膜感測器觀察其展向特性,利用Ensemble Empirical Mode Decomposition去除背景訊號截取出不穩定擾動之分量,配合交叉相關性分析,可以清楚分辨出不穩定擾動之二維與三維特性。同時量測MEMS sensor與hot-wire的訊號,並且移動hot-wire的徑向位置,利用上述分析方法可以讓吾人更加了解初始擾動發展的物理機制。

    An experimental investigation of the unstable disturbances in the developing region of pulsating pipe flow was conducted, relevant to the onset of the laminar-turbulent transition process. The velocity measurements were made by a boundary type hot-wire. The spanwise characteristics of unstable disturbances were observed by five self-made MEMS thermal-film sensors flushed with the wall across 40 degrees in the azimuthal direction. The characteristic frequency of the unstable disturbances in each cycle was resolved by the Hilbert-Huang transformation. Furthermore, the unstable disturbances measured by the MEMS sensors were analyzed with the Ensemble Empirical Mode Decomposition method to remove the trend signal. Subsequently, the cross-correlation analysis revealed the distinction between the two-dimensional and the three-dimensional unstable disturbances clearly. Simultaneous measurements using a hot-wire traversed along the radial direction. Based on the MEMS sensors on the wall, a postulation is given concerning the initial unstable disturbance developed in the periodical pipe flow.

    目錄 摘要 I Abstract II 致謝 III 符號說明 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 背景回顧 1 1.2.1 層紊流轉換回顧 1 1.2.2 過渡路徑(Path to transition) 4 1.2.3 二次不穩定(Secondary instability) 4 1.2.4 定常,週期性與瞬變管流(Steady, periodic and transient pipe flow) 5 第二章 實驗設備 8 2.1 管流設備 8 2.2 流場控制器(Flow controller) 8 2.3 壓力孔(pressure taps) 9 2.4 壓力轉換器(Pressure transducer) 9 2.5 定溫型熱線測速儀(Constant temperature hot-wire anemometer) 9 2.6 訊號擷取系統 10 2.7 MEMS熱膜感測器 10 第三章 實驗量測與數據處理方法 13 3.1 Hilbert Huang transform (HHT) 14 3.1.1 經驗模態分離法(Empirical Mode Decomposition) ………………………………………………………14 3.1.2 Hilbert transform(HT) 16 3.2 交叉相關性分析(Cross-Correlation analysis) 17 3.3 流場基本量測方法 17 第四章 實驗結果討論 20 4.1 流場基本特性 20 4.2 不穩定擾動之相位分佈與成長 22 4.3 MEMS sensor訊號量測與結果 25 4.3.1 以EEMD拆解出MEMS sensor之不穩定擾動 25 4.3.2 不穩定擾動起始發展位置 26 4.3.3 不穩定擾動之展向特性 27 4.4 不穩定擾動之特徵頻率 29 第五章 結論與未來建議 31 5.1 結論 31 5.2 未來工作與建議 32 Reference 33 表目錄 表一 不同case之流況條件 38 圖目錄 圖1.1 curves of neutral stability diagram[27] 39 圖1.2 TS wave amplitude development at peak and valley 39 圖1.3 平板流之層紊流轉換過程[9] 40 圖1.4 transition roadmap[10] 40 圖2.1 管流設備示意圖 41 圖2.2 pressure taps 41 圖2.3 (a)流場控制器與85%阻塞比之擋板 (b)35%阻塞比擋板 (c)photo sensor 42 圖2.4 Validyne DP-103 42 圖2.5定溫型熱線測速儀 43 圖2.6 資料擷取系統 43 圖3.1 hot-wire訊號以及EMD拆解出之IMF 44 圖3.2 IMF 6以AM-FM decomposition拆解出之AM項與FM項 44 圖3.3 IMF6經由NHT計算得到之瞬時頻率與強度 45 圖3.4 marginal Hilbert spectrum 45 圖3.5 (a)模型側視圖 (b)模型正視圖 46 圖3.6 hot-wire與MEMS sensor實體模型圖 47 圖4.1 不同流場擾動頻率其Reta與Reos關係比較 48 圖4.2 case 1於x/D=25處之流況 48 (無觀察到任何擾動) 48 圖 4.3 case 1於x/D=26處之流況 49 (r/R=0.8之波谷位置出現微小擾動) 49 圖 4.4 case 1於x/D=27處之流況 49 (r/R=0.8之波谷部分出現明顯之擾動) 49 圖 4.5 case 1於x/D=28處之流況 50 圖 4.6 case 1於x/D=29處之流況 50 (不穩定擾動之非線性成長) 50 圖 4.7 case 2於x/D=29處之流況 51 (無觀察到任何擾動) 51 圖 4.8 case 2於x/D=30處之流況 51 (r/R=0.8加速段有為小擾動出現) 51 圖 4.9 case 2於x/D=31處之流況 52 (r/R=0.8處有明顯擾動,但在r/R=0.6附近之位置之擾動強度更大) 52 圖 4.10 case 2於x/D=32處之流況 52 圖 4.11 case 2於x/D=33處之流況 53 圖 4.12 case 1於x/D=25處之相位延遲分佈 53 圖 4.13 case 2於x/D=29處之相位延遲分佈 54 圖 4.14 case 1於x/D=25處之∆UU∞分佈 54 圖 4.15 case 2於x/D=29處之∆UU∞分佈 55 圖 4.16 case 1於x/D=25處各個相位之速度分佈 55 (在減速相位靠近壁面處有凹陷) 55 圖 4.17 case 2於x/D=29處各個相位之速度分佈 56 (在減速相位靠近壁面處有凹陷) 56 圖 4.18 case 1於x/D=25壁面附近各個相位之速度分佈 56 (在減速相位靠近壁面處有凹陷) 56 圖 4.19 case 2於x/D=29壁面附近各個相位之速度分佈 57 (在減速相位靠近壁面處有凹陷) 57 圖 4.20 case 1於x/D=25,r/R=0.98~0.94速度分佈 57 圖 4.21 case 2於x/D=29, r/R=0.98~0.94速度分佈 58 圖 4.22case 1 x/D=25 du/dy各個相位之分佈圖 58 圖 4.23 case 2 x/D=29 du/dr各個相位之分佈圖 59 圖 4.24 case 1 x/D=27 r/R=0.8五個周期之信號比較 59 圖 4.25case 2 x/D=31 r/R=0.74五個周期之信號比較 60 圖 4.26 case 1 x/D=27 r/R=0.8之相位平均與95%信賴區間 60 圖 4.27 case 2 x/D=31 r/R=0.74之相位平均與95%信賴區間 61 圖 4.28 case 1 x/D=27 以EEMD拆解出之不穩定分量強度之分佈圖 61 圖 4.29 case 2 x/D=31 以EEMD拆解出之不穩定分量強度之分佈圖 62 圖 4.30 case 2 x/D=31 以r/R=0.24之擾動分量做為基準之交叉相關分析(相關性係數之最大值分佈) 62 圖 4.31 case 2 x/D=31 以r/R=0.24之擾動分量做為基準之交叉相關分析(相位延遲分佈) 63 圖 4.32 case 2 x/D=31 r/R=0.24與r/R=0.4之擾動分量比較 63 圖 4.33 case 2 x/D=31 r/R=0.24與r/R=0.52之擾動分量比較 64 圖 4.34 case 2 x/D=31 r/R=0.24與r/R=0.64之擾動分量比較 64 圖 4.35 case 2 x/D=31 r/R=0.24與r/R=0.72之擾動分量比較 65 圖 4.36 case 2 x/D=31 r/R=0.24與r/R=0.8之擾動分量比較 65 圖 4.37 case 2 x/D=31 r/R=0.24與r/R=0.86之擾動分量比較 66 圖 4.38 case 2 x/D=31 以EEMD拆解出之不穩定分量強度之分佈圖 66 圖4.39 case 3 hot-wire與MEMS sensor 2之不穩定擾動訊號比較 67 圖4.40 case 3 hot-wire於r/R=0.94與MEMS sensor 2之交叉相關性分析 67 圖4.41 MEMS sensor 2量測到之不穩定擾動與各徑相位置hot-wire量測到之不穩定擾動間之time lag (case 3, x/D=28) 68 圖4.42 MEMS sensor 2量測到之不穩定擾動與各徑相位置hot-wire量測到之不穩定擾動間之time lag (case 4, x/D=33) 68 圖4.43 case 3 x/D=28處MEMS sensor之訊號比較 69 圖4.44 case 3 x/D=28 MEMS sensor之訊號比較 70 圖4.45 case 4 x/D=33處,sensor 2~6之不穩定擾動分量 71 圖4.41 case 3 x/D=28,三維非線性擾動 72 圖4.46 case 1 x/D=28,r/R=0.76處之hot-wire訊號瞬時頻率分析 72 圖4.47 case 1 x/D=28,r/R=0.94處之hot-wire訊號瞬時頻率分析 73 圖4.48 case 2 x/D=31,r/R=0.64處之hot-wire訊號瞬時頻率分析 73 圖4.49 case 1 x/D=25處各相位速度曲線與Blasius velocity profile 74 圖4.50 neutral stability curve of Blasius velocity profile and case 1 74

    [1] Schlichting, H., “Boundary layer theory,” McGraw-Hill, 1960.
    [2] Tollmien, W., “The production of turbulence,” NACA Technical Memo. 609, 1931.
    [3] Lin, C. C., “The theory of hydrodynamic stability,” University Press, 1955.
    [4] Squire, H. B., “on the stability for three-dimensional disturbances of viscous fluid flow between parallel walls,” Proc. R. Soc. Lond., vol. A 1933 142, pp. 8, 1933.
    [5] Schubauer, G. B., and Skramstad, H. K., “Laminar Boundary-Layer Oscillations and Transition on a Flat Plate,” N.A.C.A., A.C.R. Report No.909, 1943.
    [6] Schubauer, G. B., and Skramstad, H. K., “Laminar Boundary-Layer Oscillaions and Stability of Laminar Flow,” Journal of The Aeronautical Sciences, vol. 14, pp. 69-78, 1947.
    [7] Emmons, H. W., “The Laminar-Turbulent Transition in a Boundary Layer,” AIAA, vol. 18, no. 7, pp. 490-498, 1951.
    [8] Schubauer, G. B., and Klebanoff, P. S., “Contributions on the mechanics of boundary layer transition,” N.A.C.A., Report No.1289, 1956.
    [9] Klebanoff, P. S., and Tidstrom, K. D., “evolution of amplified waves leading to transition in a boundary layer with zero pressure gradient,” NASA TN D-195, 1959.
    [10] Klebanoff, P. S., Tidstrom, K. D., and Sargent, L. M., “The three-dimensional nature of boundary-layer instability,” Journal of Fluid Mechanics, vol. 12, no. 01, pp. 1-34, 1962.
    [11] White, F. M., “Viscous fluid flow,” McGraw-Hill, 1911.
    [12] Morkovin, M. V., Reshotko, E., and Herbert, T., “Transition in open flow systems-Areassement.,” APS., 1994.
    [13] Benney, D. J., and Lin, C. C., “On the Secondary Motion Induced by Oscillations in a Shear Flow,” Physics of Fluids, vol. 3, no. 4, pp. 656-657, 1960.
    [14] Benney, D. J., “A non-linear theory for oscillations in a parallel flow,” Journal of Fluid Mechanics, vol. 10, no. 02, pp. 209-236, 1961.
    [15] Wygnanski, I. J., and Champagne, F. H., “On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug,” Journal of Fluid Mechanics, vol. 59, no. 02, pp. 281-335, 1973.
    [16] Iguchi, M., Ohmi, M., Fujii, Y., “Behavior of Turbulent Slug in a Transient Pipe Flow,” JSME Series II, vol. 32, no. 3, pp. 340-347, 1989.
    [17] He, S., and Jackson, J. D., “A study of turbulence under conditions of transient flow in a pipe,” Journal of Fluid Mechanics, vol. 408, no. -1, pp. 1-38, 2000.
    [18] Womersley, J. R., “Method for the calculation of velocity, rate of Flow and viscous drag in arteries when the pressure gradient is known,” J. Physiol., vol. 127, pp. 553-563, 1955.
    [19] Uchida, S., “The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe,” Zeitschrift für Angewandte Mathematik und Physik (ZAMP), vol. 7, no. 5, pp. 403-422, 1956.
    [20] Shemer, L., Wygnanski, I., and Kit, E., “Pulsating flow in a pipe ” J. Fluid. Mech., vol. 153, pp. 313-337, 1984.
    [21] He, S., and Jackson, J. D., “An experimental study of pulsating turbulent flow in a pipe,” European Journal of Mechanics B/Fluids, vol. 28, pp. 309-320, 2009.
    [22] Sergeev, S. I., “Fluid oscillations in pipes at moderate Reynolds numbers,” Mekhanika Zhidkost i Gaza vol. 1, no. 1, pp. 168-170, 1966.
    [23] Hino, M., Sawamoto, M., and Takasu, S., “Experiments on transition to turbulence in an oscillatory pipe flow,” Journal of Fluid Mechanics, vol. 75, no. 02, pp. 193-207, 1976.
    [24] Merkli, P., and Thomann, H., “Transition to turbulence in oscillating pipe flow,” Journal of Fluid Mechanics, vol. 68, no. 03, pp. 567-576, 1975.
    [25] Hussain, A. K. M. F., and Reynolds, W. C., “The mechanics of an organized wave in turbulent shear flow,” Journal of Fluid Mechanics, vol. 41, no. 02, pp. 241-258, 1970.
    [26] Hussain, A. K. M. F., and Reynolds, W. C., “The mechanics of an organized wave in turbulent shear flow. Part 2. Experimental results,” Journal of Fluid Mechanics, vol. 54, no. 02, pp. 241-261, 1972.
    [27] Sarpkaya, T., “Coherent structures in oscillatory boundary layers,” Journal of Fluid Mechanics, vol. 253, no. -1, pp. 105-140, 1993.
    [28] Miller, J. A., and Fejer, A. A., “Transition phenomena in oscillating boundary-layer flows,” Journal of Fluid Mechanics, vol. 18, no. 03, pp. 438-448, 1964.
    [29] Obremski, H. J., and Fejer, A. A., “Transition in oscillating boundary layer flows,” Journal of Fluid Mechanics, vol. 29, no. 01, pp. 93-111, 1967.
    [30] Ohmi, M., Iguchi, M., and Ikuo, U., “Transition to turbulence in a pulsatile pipe flow part 1, Wave forms and distribution of pulsatie velocities near transition region,” Bulletin of the JSME, vol. 25, no. 200, pp. 182-189, 1982.
    [31] Iguchi, M., and Ohmi, M., “Transition to turbulence in a pulsatile pipe flow( 3rd report, flow regimes and the conditions describing the generation and decay of turbulence),” Bulletin of the JSME, vol. 27, no. 231, pp. 1873-1880, 1984.
    [32] Iguchi, M., and Ohmi, M., “Transition to turbulence in a pulsatile pipe flow part 2, Characteristics f reversing flow accopanied by relaminarization,” Bulletn of the JSME, vol. 25, no. 208, pp. 1529-1536, 1982.
    [33] Iguchi, M., Urahata, I., and Ohmi, M., “Turbulent slug and velocity field in the inlet region for pulsatile pipe flow,” JSME, vol. 30, no. 261, pp. 414-422, 1987.
    [34] 黃日暉, “應用MEMS熱膜感測器於非定常管流層紊流轉換之初始發展探討,” 成功大學航太所碩士論文(2010), 2010.
    [35] 羅宏森, “應用MEMS熱膜感測器與希爾伯特黃轉換分析脈動式管流之初始不穩定現象,” 成功大學航太所碩士論文(2010), 2010.
    [36] Lo, H. S., and Miau, J. J., “An experimental study on laminar-turbulent transition in a pulsating pipe flow,” Journal of Aeronautics, Astronautics nad Aviations, Series A, vol. 43, no. 1, pp. 17-26, 2011.
    [37] 杜榮國, “MEMS 熱膜感測器設計製造及應用於探討非定常流動分離現象,” 成功大學航太所碩士論文(2003).
    [38] Boashash, B., “Estimating and Interpreting The Instantaneous Frequency of a Signal-Part 1: Fundamentals,” IEEE, vol. 80, no. 4, 1992.
    [39] Boashash, B., “Estimating and Interpreting the Instantaneous Frequency of a Signal-Part 2: Algorithms and Applications,” IEEE, vol. 80, no. 4, 1992.
    [40] Huang, R., and Shen, Z., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” The Royal Society, vol. 454, pp. 903-995, 1998.
    [41] Huang, N. E., Shen, Z., and Long, S. R., “A NEW VIEW OF NONLINEAR WATER WAVES: The Hilbert Spectrum1,” Annual Review of Fluid Mechanics, vol. 31, no. 1, pp. 417-457, 1999.
    [42] Wu, Z., and Huang, N. E., “A study of the cahracteristics of white noise using the empirical mode decomposition method,” The Royal Society, vol. 460, pp. 1597-1611, 2003.
    [43] Flandrin, P., Rilling, G., and Goncalvews, P., “Empirical Mode Decomposition as a Filter Bank,” IEEE Signal Processing Letters, vol. 11, no. 2, pp. 112-114, 2004.
    [44] Huang, N. E., “Ensemble Empirical Mode Decomposition : A noise assisted data analysis method,” Advances in Adaptive Data Analysis, vol. 1, pp. 1-41, 2008.
    [45] Huang, N. E., “A review on Hilbert-Huang transform : Method and its applications to geophysical studies,” Reviews of Geophysics, vol. 46, 2007.
    [46] Bedrosian, E., “A product theorem for Hilbert transforms,” Proceedings of the IEEE, vol. 51, no. 5, pp. 868-869, 1963.
    [47] Huang, N. E., “On instantaneous frequency,” Advances in Adaptive Data Analysis, vol. 1, no. 2, pp. 177-229, 2009.

    下載圖示 校內:立即公開
    校外:2012-08-26公開
    QR CODE