簡易檢索 / 詳目顯示

研究生: 連昭晴
Lien, Chao-Chin
論文名稱: 鐵/金核殼型磁性複合奈米粒子 之製備與應用
Preparation and Applications of Fe-Core/ Au-Shell Magnetic Composite Nanoparticles
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 113
中文關鍵詞: 微乳化
外文關鍵詞: Fe@Au, MTX
相關次數: 點閱:78下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要以微乳化與熱裂解兩種方法製備Fe@Au核殼型複合奈米粒子,探討產品特性,並與抗癌藥物葉酸抗拮劑(MTX)鍵結。本研究認為,若能在鐵奈米粒子的表面被覆金奈米薄層,不僅可避免鐵被氧化,且可透過表層的金與各種藥物或生物分子結合,創造出兼具磁性、光學特性、與生物或生醫功能的奈米複合體,同時達到標識、標的、及分離的目的,廣泛應用於生化與生醫領域上。

      關於微乳化法製備Fe@Au核殼型複合奈米粒子的研究,係在water/CTAB/n-butanol/isooctane微乳化系統中進行。利用X光繞射儀、紫外光及可見光光譜儀、化學分析電子光譜儀,可證明所得產品確為Fe@Au核殼型複合奈米粒子,且無氧化鐵產生。表面經修飾後,可成功接上MTX分子。進一步探討Fe@Au核殼型複合奈米粒子對細胞的毒性,結果發現新鮮製得的Fe@Au奈米粒子相對於正常的細胞而言,對癌細胞有選擇性的毒殺效果,但經在空氣或溶液中陳化數天後,其毒性即明顯降低。由氧化測試及亞鐵離子釋放速率的研究推測,Fe@Au核殼型複合奈米粒子的鐵核表面可能透過金殼層晶粒間的微細孔隙釋出亞鐵離子,造成細胞的毒殺,但在空氣或溶液中陳化數天後,金殼層晶粒間微細孔隙內的鐵核表面,可能產生一層薄氧化層,抑制亞鐵離子的進一步釋出。據此,本研究提出一智慧型藥物的概念,利用新鮮製得的Fe@Au核殼型複合奈米粒子選擇性毒殺癌細胞,待數天後,此粒子會自身安定化,不會造成長期性的傷害。

      關於以熱裂解法製備Fe@Au核殼型複合奈米粒子的研究,在保護劑油酸和油胺存在下,先熱裂解Fe(CO)5形成Fe奈米粒子,再利用1,2-十六烷二醇來還原醋酸金,可成功製得單分散的Fe@Au奈米粒子。由X光繞射儀與紫外光/可見光光譜儀的分析結果顯示所得產品為核殼型結構且無氧化鐵產生。

      In this thesis, Fe@Au core-shell composite nanoparticles were prepared by microemulsion and thermal decomposition methods. The product was characterized and conjugated with the anti-cancer drug methotrexate (MTX). In the as synthesized product, the oxidation of iron nanoparticles could be hindered due to the surface coating of Au nanoshells. Also, via the conjugation with drugs or biomolecules, the product may become a nanocomposite with magnetic, optical, and biological or biomedical functions. Since the aims of labeling, targeting, and separation could be achieved simultaneously, the product may be used widely in biochemical and biomedical fields.

      First, Fe@Au were prepared in the microemulsion system of water/CTAB/n-butanol/isooctane. By the analysis of XRD pattern, UV/VIS absorption spectra, and ESCA, the product was recognized to be the Fe@Au core-shell composite nanoparticles without the presence of iron oxide. Via surface modification, the product could be conjugated with MTX molecules. It was found that the fresh product has selective toxicity for cancer cells compared to the normal mucosal keratinocytes, while the product aged in air or aqueous solution for several days has significantly reduced toxicity . From the studies on the oxidation of the product and the releasing of ferrous ions, it was suggested that ferrous ions might release from the surface of iron core via the grain boundary of Au nanoshells. After aging in air or aqueous solution for several days, a thin layer of iron oxide might form on the surface of iron core within the grain boundary of Au nanoshells, which prevented from the further releasing of ferrous ions and oxidation of iron. Accordingly, in this study, an idea using the product as a smart drug was proposed. The fresh product could be used to kill the cancer cells selectively, while the product spontaneously transformed into nontoxic agents which significantly reduced potential accumulation of the toxic compounds and the systemic side effects.

      Second, monodisperse Fe@Au core-shell composite nanoparticles were prepared by thermal decomposition of iron pentacarbonyl and reduction of gold acetate with 1,2-hexadecaneediol in the presence of stabilizers oleic acid and oleylamine. The analyses of XRD pattern and UV/VIS absorption spectrum revealed the formation of Fe@Au composite nanoparticles without the presence of iron oxide.

    中文摘要 I 英文摘要 III 誌謝 V 總目錄 VI 表目錄 X 圖目錄 XI 符號說明 XV 第一章 緒論 1.1 奈米材料與奈米技術 1 1.1.1 奈米材料與奈米技技術之簡介 1 1.1.2 奈米材料的特性 2 1.1.3 奈米材料的製備 7 1.1.4 奈米材料的應用領域 10 1.2 磁性奈米材料 12 1.2.1 磁性奈米粒子之介紹 12 1.2.2 磁性奈米在生醫上的應用 12 1.3 研究動機與內容 17 第二章 理論部分 2.1 微乳化系統介紹 18 2.1.1 前言 18 2.1.2 正微胞、逆微胞與微乳化 18 2.1.3 油中水滴(w/o)型微乳化系統 20 2.1.4 逆微胞的優點 26 2.1.5 逆微胞系統中製備奈米粒子的方法 27 2.1.6 影響逆微胞性質的因素 29 2.1.7 影響粒徑之主要製備變因 31 2.2 磁性理論 33 2.2.1 磁性簡介 33 2.2.2 磁性、磁性體、磁區與磁滯曲線之簡介 33 2.2.3 磁性與粒徑的關係 37 2.3 熱裂解理論 40 2.3.1 原理 40 2.3.2 製備 40 2.3.3 保護劑(界面活性劑)的選用 43 2.3.4 熱裂解法的延伸應用 44 2.4 葉酸拮抗劑(MTX:Methotrexate)之介紹 46 第三章 實驗部分 3.1 藥品 47 3.2 儀器 49 3.3 材料 50 3.4 微乳化法製備Fe@Au奈米粒子 50 3.4.1 前 言 50 3.4.2 Fe@Au複合磁性奈米粒子的製備方法 51 3.5 熱裂解法製備Fe@Au奈米粒子 54 3.5.1 前 言 54 3.5.2 Fe@Au奈米粒子實驗方法 54 3.6 在Fe@Au奈米粒子上共價鍵結MTX之研究 58 3.6.1 前 言 58 3.6.2 在Fe@Au奈米粒子上共價鍵結MTX之實驗方法 58 第四章 結果與討論 4.1 微乳化法製備Fe@Au奈米粒子 62 4.1.1 特性研究 62 4.2 熱裂解法製備Fe@Au奈米粒子之特性研究 72 4.2.1 熱裂解法製備鐵奈米粒子之特性分析 72 4.2.2 熱裂解法製備Fe@Au及Fe@Ag奈米粒子之特性分析 75 4.3 在Fe@Au奈米粒子上共價鍵結MTX之研究 85 4.3.1 前 言 85 4.3.2 MTX 共價鍵結Fe@Au奈米粒子之研究 86 4.3.2.1 Fe@Au奈米粒子的MTX共價鍵結效率之分析 86 4.3.2.2 MTX的鍵結分析 90 4.3.2.3 TEM分析 92 4.3.3 Fe@Au奈米粒子的毒殺效果 94 4.3.4 Fe@Au奈米粒子的氧化測試以及鐵離子的釋放速率 96 4.3.4.1 Fe@Au奈米粒子的氧化測試 96 4.3.4.2 Fe@Au奈米粒子的鐵離子的釋放速率測定 99 第五章 結論 106 參考文獻 107 附錄 111 自述 113

    1. Rao, C. N. R. and Cheetham, A. K.,J. Mater. Chem., 2001,11, 2887.

    2. 蘇品書編撰,超微粒子材料技術,1989.

    3. 莊萬發編撰,超微粒子理論應用,1995.

    4. 呂世源,科學發展,2002,11,359.

    5. 王崇人,科學發展,2002,6,354.

    6. 工研院工業材料研究所,材料奈米技術專刊,經濟部技處,2001.

    7. 吳明立,微乳化系統製備雙金屬奈米粒子之研究,國立成功大學化學工程研究所博士論文,2001.

    8. 王炫仁,鎳核/金殼及鎳核/銀殼複合奈米粒子之製備, 國立成功大學化學工程研究所博士論文,2002.

    9. 黃淑娟,化工資訊月刊,2002,16,4,34.

    10.尹邦躍,奈米時代,2002.

    11.馬振基,奈米材料科技原理與應用2003.

    12.鄭景軒,磁性奈米微粒之二氧化矽被覆技術之研究,國立成功大學機械研究所碩士論文,2003.

    13.陳育裕,鐵氧超微磁粉之製備研究,國立成功大學化學工程研究所碩士論文,1998.

    14.王子賢,李文乾,化工,2003,50,2,44.

    15.葉晨聖,化工資訊月刊,2004,7,64.

    16.李昂,化工資訊,2001,10,44.

    17.戴明鳳,磁性技術協會會訊,2002,32,14.

    18.Huang, S. H.;Liao, M. H. and Chen, D. H.,Biotechnol. Prog.,2003,19,3,1095.

    19.傅昭銘,王昱豐,物理雙月刊,2003,444.

    20.Hafeli, U.;Schűtt, W;Teller, J. and Zborowski, M. Scientific and Clinical Applications of Magnetic Carriers,1997.

    21.Soong, R. K.;Bachand, G. D.;Neves, H. P.;Olkhoveets, A. G.;Craighead, H. G. and Montemagno, C. D.,Science, 2000,290,1555.

    22.Brigger, I.;Dubernet, C. and Couvreur, P.,Adv. Drug Deliv. Rev.,2002,54,631.

    23.Göpel,W.,Biosensors & Bioelectronics,1998,13,723.

    24.West, J. L. and Halas, N. J.,Biotechnology,2000,11,215.

    25.Curtis, A. and Wilkinson, C.,Trends Biotechnol.,2001,19, 97.

    26.Taton, T. A.,Trends Biotechnol.,2002,20,277.

    27.Niemeyer, C. M.,Angew. Chem.,2001,40,4128.

    28.Michalet, X.;Pinaud, F.;Lacoste, T. D.;Dahan, M. M.;Bruchez, P.;Alivisatos, A. P. and Weiss, S.,Single Mol.,2001,2,261.

    29.Csáki, A.;Maubach, G.;Born, D.;Reichert, J. and Fritzsche, W.,Single Mol.,2002,3,275.

    30.Pileni, M. P.,Structure and Reactivity in Reverse Micelles, Elsevier.1989.

    31.王鳳英,高立圖書有限公司,1996.

    32.Moulik, S. P. and Paul, B. K.,Adv. in colloid & interface Sci.,1998,78,99.

    33.Hatton, T. A.,Surfactant-Based Separation Process,1989.

    34.Luisi, P. L. and Magid, L. J.CRC Crit. Rev. Biochem., 1986,20,409.

    35.Luisi, P. L.,Angew. Chem. Int. Ed. Engl.,1985,24.439.

    36.Luthi, P.;Luisi, P. L.,J. Am. Chem. Soc. 1984,106, 7285.

    37.Messing, G. L.;Hirano, S. and Hausener, H.,Ceramic Powder Science III,1990.

    38.Martinek, K.,Biochem. Intern.,1989,18,871.

    39.Gao, M.;Yang, Y.;Yang, B.;Shen, J. and Ai, X,J., Chem. Soc. Faraday Trans.,1995,91,4121.

    40.王正全,鈀奈米粒子之製備與應用,國立成功大學化學工程研究所博士論文,2001.

    41.汪建民,陶瓷技術手冊(上),1994.

    42.張煦,李學養,磁性物理學,1982.

    43.Cullity, B. D.,Introduction to Magnetic Material.,
    1972.

    44.黃忠良,磁性陶瓷,1999.

    45.Davids, M. J.;Taylor, J. I.; Sachsinger, N. and Bruce , I. J.,Analytical Biochemistry.,1998,262,92.

    46.黃忠良,磁性流體理論應用,1999.

    47.Hyeon, T.,Chem.Commun.,2003,927.

    48.Farrell, D.;Majetich, S. A. and Wilcoxon, J. P., J.Phys. Chem. B,2003,107,11022.

    49.Sun, S.;Murray, C. B;Weller, D.;Folks, L. and Moser, A., Science,2000,1989.

    50.Park, J. and Cheon*, J. , J. Am. Chem. Soc. 2001, 123, 5743.

    51.Yin, Y.;Rioux, R. M.;Erdonmez, C. A. and Alivisatos, A. P.,Science,2004,304,711.

    下載圖示 校內:2006-07-16公開
    校外:2006-07-16公開
    QR CODE