| 研究生: |
張景翔 Chang, Ching-Hisang |
|---|---|
| 論文名稱: |
主鏈含噁二唑衍生物高分子電子傳輸材料的合成與鑑定 Synthesis and Characterization of a Polymer Containing Electron-Transport Oxadiazole Groups |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 高分子發光二極體 、電子傳輸材料 、噁二唑 、電洞阻擋 |
| 外文關鍵詞: | PLEDs, electron-transport material, oxadiazole, hole-blocking |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高分子發光二極體(PLED)的發光乃是藉由從陰極與陽極分別注入電子與電洞,並於發光層再結合形成放光現象,因此電子與電洞注入和傳遞的平衡是影響元件效率的重要因素。但是在大部分的有機共軛材料中電洞的傳遞速率比電子快,常常無法使載子有效地在元件發光層再結合,因此大幅降低其電流效率,故本研究合成出可以幫助電子傳遞的電子傳輸材料。
本研究利用Suzuki coupling reaction聚合出主鏈含1,3,4-噁二唑衍生物以及側鏈具有可提升溶解性的長碳鏈醚基的高分子P1作為電子傳輸材料,以核磁共振光譜(1H-NMR)及元素分析儀(EA)鑑定其結構,並且探討高分子P1之熱性質、光學性質以及電化學性質。
P1的熱裂解溫度(Td)為305.5 oC,玻璃轉移溫度(Tg)為96.2 oC顯示具有高熱穩定性。薄膜態UV-Vis有兩個明顯吸收峰,分別在323 nm與383 nm,由起始吸收波長(UVonset)推算出高分子能帶間隙(Egopt)為2.84 eV;螢光光譜(PL)放光波長在442 nm。由循環伏安法(Cyclic Voltammetry)量測計算出P1的LUMO能階(-2.73 eV)與HOMO能階(-5.64 eV),電化學法的能階差(Egel)為2.91 eV,且由其低HOMO能階顯示P1具有電洞阻擋的特性。
In this work, we synthesized a polymer (P1) containing oxadiazole groups to be an electron-transport material. P1 was synthesized successfully by Suzuki coupling reaction, and chemical structure of P1 was characterized by 1H-NMR and element analysis. Also, the physical properties (thermal, optical, electrochemical) were investigated from DSC, TGA, optical spectra and cyclic voltammetry respectively. The decomposition temperature (Td) and glass transition temperature (Tg) of P1 are 305.5 oC and 96.2 oC respectively which reveal P1 good thermal stability. In film state, the absorption and photo luminescence peaks of P1 are at 323/383 nm and 442 nm respectively. The HOMO and LUMO levels of P1 are -5.64 eV and -2.73 eV respectively. The LUMO level of P1 (-2.73 eV) is closed to emitting layer HY-PPV (-2.8 eV), meaning P1 should efficiently help electron transporting. The HOMO level of P1 (-5.64 eV) is much lower than HY-PPV (-5.0 eV), meaning P1 exhibits good hole-blocking ability.
[1] M. Pope, P. Magnante, H. P. Kallmann, Electroluminescence in Organic Crystals, Journal of Chemical Physics, 38, 2042-2043 (1963).
[2] C. W. Tang, S. A. Vanslyke, Organic Electroluminescent Diodes, Applied Physics Letters, 51, 913-915 (1987).
[3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Light-Emitting-Diodes Based on Conjugated Polymers, Nature, 347, 539-541 (1990).
[4] 段啟聖, 化工資訊雜誌與商情, 第26期, 40 (民國94年8月).
[5] 郭昭輝, 塑膠資訊雜誌, (民國91年10月).
[6] 吳育星, 含二乙二醇乙醚基芳香1,2,4-三氮唑衍生物的合成、鑑定與光電性質, 碩士論文, 國立成功大學(2013).
[7] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (2006).
[8] D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, 6th ed. (2007).
[9] 周聖穎, 主鏈含三聯苯及四乙二醇醚基團之高分子:合成、鑑定及光電應用, 碩士論文, 國立成功大學(2014).
[10] V. May, O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 2nd, rev. and enl ed. (2004).
[11] Z. H. Kafafi, Organic Electroluminescence (2005).
[12] 陳金鑫, 黃孝文, 夢幻顯示器 : OLED材料與元件 (2007).
[13] L. Akcelrud, Electroluminescent polymers, Progress in Polymer Science, 28, 875-962 (2003).
[14] T.-Q. Nguyen, I. B. Martini, J. Liu, B. J. Schwartz, Controlling Interchain Interactions in Conjugated Polymers: The Effects of Chain Morphology on Exciton−Exciton Annihilation and Aggregation in MEH−PPV Films, Journal of Physical Chemistry B, 104, 237-255 (2000).
[15] B. J. Schwartz, T.-Q. Nguyen, J. Wu, S. H. Tolbert, Interchain and intrachain exciton transport in conjugated polymers: ultrafast studies of energy migration in aligned MEH-PPV/mesoporous silica composites, Synthetic Metals, 116, 35-40 (2001).
[16] V. Tran, B. J. Schwartz, Role of nonpolar forces in aqueous solvation: Computer simulation study of solvation dynamics in water following changes in solute size, shape, and charge, Journal of Physical Chemistry B, 103, 5570-5580 (1999).
[17] J. E. Guillet, Polymer Photophysics and Photochemistry: New York: Canbridge University Press (1985).
[18] K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Highly efficient organic devices based on electrically doped transport layers, Chemical Reviews, 107, 1233-1271 (2007).
[19] A. Kohler, J. Wilson, Phosphorescence and spin-dependent exciton formation in conjugated polymers, Organic Electronics, 4, 179-189 (2003).
[20] A. Kohler, J. S. Wilson, R. H. Friend, Fluorescence and phosphorescence in organic materials, Advanced Materials, 14, 701-707 (2002).
[21] T. Sugimoto, K. Fukutani, Electric-field-induced nuclear-spin flips mediated by enhanced spin-orbit coupling, Nature Physics, 7, 307-310 (2011).
[22] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramaesha, Z. V. Vardeny, Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers, Nature, 409, 494-497 (2001).
[23] 黃孝文, 陳雲, 化工資訊月刊, 第15卷第3期, 8 (2001).
[24] 葉昆明, 陳雲, 科學發展, 第385期, 58 (2005).
[25] 陳信宏, 陳雲, 中工高雄會刊, 第3期, 72 (2006).
[26] 楊素華, 光訊雜誌, 第98期, 29 (2002).
[27] Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices, Chemical Reviews, 107, 953-1010 (2007).
[28] Z. Gao, R. Huang, Y. Lin, Y. Zheng, Y. Liu, B. Wei, Reduced turn-on voltage and improved efficiency with free interfacial energy barrier in organic light-emitting diodes, Synthetic Metals, 207, 26-30 (2015).
[29] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers, Nature, 411, 617-617 (2001).
[30] J. L. Segura, The chemistry of electroluminescent organic materials, Acta Polymerica, 49, 319-344 (1998).
[31] H. A. M. v. Mullekom, J. A. J. M. Vekemans, E. E. Havinga, E. W. Meijer, Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers, Materials Science and Engineering, 32, 1-40 (2001).
[32] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Flexible Light-Emitting-Diodes Made from Soluble Conducting Polymers, Nature, 357, 477-479 (1992).
[33] D. Braun, A. J. Heeger, Visible-Light Emission from Semiconducting Polymer Diodes, Applied Physics Letters, 58, 1982-1984 (1991).
[34] A. J. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials, Journal of Physical Chemistry B, 105, 8475-8491 (2001).
[35] G. Hughes, M. R. Bryce, Electron-transporting materials for organic electroluminescent and electrophosphorescent devices, Journal of Materials Chemistry, 15, 94-107 (2005).
[36] R. G. Kepler, Charge Carrier Production and Mobility in Anthracene Crystals, Physical Review, 119, 1226-1229 (1960).
[37] G. Horowitz, Organic field-effect transistors, Advanced Materials, 10, 365-377 (1998).
[38] E. H. Martin, J. Hirsch, Conduction Induced by Electron Bombardment in Polymer Films, Solid State Communications, 7, 279-282 (1969).
[39] A. Babel, S. A. Jenekhe, High electron mobility in ladder polymer field-effect transistors, Journal of the American Chemical Society, 125, 13656-13657 (2003).
[40] S. A. Jenekhe, S. J. Yi, Efficient photovoltaic cells from semiconducting polymer heterojunctions, Applied Physics Letters, 77, 2635-2637 (2000).
[41] X. J. Zhang, S. A. Jenekhe, Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions, Macromolecules, 33, 2069-2082 (2000).
[42] G. G. Malliaras, J. C. Scott, The roles of injection and mobility in organic light emitting diodes, Journal of Applied Physics, 83, 5399-5403 (1998).
[43] C. Adachi, T. Tsutsui, S. Saito, Blue Light-Emitting Organic Electroluminescent Devices, Applied Physics Letters, 56, 799-801 (1990).
[44] J. Bettenhausen, P. Strohriegl, W. Brutting, H. Tokuhisa, T. Tsutsui, Electron transport in a starburst oxadiazole, Journal of Applied Physics, 82, 4957-4961 (1997).
[45] H.-C. Yeh, R.-H. Lee, L.-H. Chan, T.-Y. J. Lin, C.-T. Chen, E. Balasubramaniam, Y.-T. Tao, Synthesis, Properties, and Applications of Tetraphenylmethane-Based Molecular Materials for Light-Emitting Devices, Chemistry of Materials, 13, 2788-2796 (2001).
[46] A. Kraft, Synthesis and self-association of first-generation 1,3,4-oxadiazole-containing dendrimers, Liebigs Annalen-Recueil, 1463-1471 (1997).
[47] C. S. Wang, M. Kilitziraki, L. O. Palsson, M. R. Bryce, A. P. Monkman, I. D. W. Samuel, Polymeric alkoxy PBD [2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole] for light-emitting diodes, Advanced Functional Materials, 11, 47-50 (2001).
[48] D. W. Lee, K.-Y. Kwon, J.-I. Jin, Y. Park, Y.-R. Kim, I.-W. Hwang, Luminescence Properties of Structurally Modified PPVs: PPV Derivatives Bearing 2-(4-tert-Butylphenyl)-5-phenyl-1,3,4-oxadiazole Pendants, Chemistry of Materials, 13, 565-574 (2001).
[49] W. L. Ma, P. K. Iyer, X. Gong, B. Liu, D. Moses, G. C. Bazan, A. J. Heeger, Water/methanol-soluble conjugated copolymer as an electron-transport layer in polymer light-emitting diodes, Advanced Materials, 17, 274-277 (2005).
[50] V. Choong, Y. Park, Y. Gao, T. Wehrmeister, K. Mullen, B. R. Hsieh, C. W. Tang, Dramatic photoluminescence quenching of phenylene vinylene oligomer thin films upon submonolayer Ca deposition, Applied Physics Letters, 69, 1492-1494 (1996).
[51] 蘇筱筑, 含羧基聚芴衍生物的合成、鑑定與其在化學感測器之應用, 碩士論文, 國立成功大學(2013).
[52] C. J. Xia, R. C. Advincula, Decreased aggregation phenomena in polyfluorenes by introducing carbazole copolymer, Macromolecules, 34, 5854-5859 (2001).
[53] L. Schöler, K. Seibel, K. Panczyk, M. Böhm, An integrated PLED – A light source for application specific lab-on-microchips (ALM), Microelectronic Engineering, 86, 1502-1504 (2009).
校內:2017-08-20公開