簡易檢索 / 詳目顯示

研究生: 趙呈達
Chao, Cheng-Ta
論文名稱: 一串聯混沌系統的高安全性Baptista型數位混沌加密系統
A high security Baptista-type cryptosystem using cascaded chaotic maps
指導教授: 陳進興
Chen, Chin-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 103
中文關鍵詞: 串聯混沌系統三角函數系統Baptista型加密系統
外文關鍵詞: trigonometric map, cascaded chaotic maps, Baptista-type cryptosystem
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 混沌系統擁有對初始值及參數的高敏感性,遍歷性…等,這些特性符合一加密系統的需求。混沌系統已被廣泛的應用於各類加密系統中,Baptista型加密系統便是其中一類。Baptista加密系統以疊代混沌系統使chaotic state到達明文相對應的區間,並以疊代的次數作為密文。在Baptista發表此加密系統後,相對應的攻擊不停的提出,但許多加強Baptista加密系統的演算法也為加強安全性而提出。

    本論文修改J. Wei et al.於2006年所提出的一Baptista型加密系統並加強其安全性。本論文所提出的加密方法將原演算法中的logistic map改為串聯多個混沌系統,它包含三個PWLCM以及一個三角函數系統,每一個混沌系統的輸出均為下一個混沌系統的輸入。因每個混沌系統擁有不同的參數,這些參數使得keyspace大幅增加。本加密系統利用三角函數系統的大範圍混沌狀態來加強加密系統中的confusion以及diffusion效果。串聯混沌系統的技術抵擋混沌系統的退化,因而增強了本論文提出的加密系統的安全性。

    本論文所提出的加密系統可以抵擋Baptista型加密系統的攻擊,而keyspace為256!x10^76足夠抵擋暴力破解法。本加密系統可將熵值為7.255686的256階灰階影像,提升到熵值7.999289。於效能方面,本加密系統加密速度為最快Baptista型加密系統之一,加密一張512x512的256階灰階影像平均花費0.48秒,而產生的密文大小只略大於明文。本加密系統的安全性與效能均高於現有的Baptista型加密系統,並可安全使用於實際應用。

    Chaotic system properties, such as sensitivity to initial control parameter and initial condition, ergo-dicity and so on, are suitable to construct secure commun-ication schemes. Many chaos based cryptosystem have been proposed, one of them is the Baptista cryptosystem. The chaotic cryptosystem proposed by Baptista encrypts the ASCII code as the number of iterations applied in the chaotic map to reach the region corresponding to the ASCII code. After its publication, many variant versions and attacks have been proposed.

    We modified the Baptista-type cryptosystem proposed by J. Wei et al. 2006. In our proposed cryptosystem, we exchange the logistic map to the cascaded chaotic maps. The cascaded maps include three PWLCMs and a trigonometric map. Four maps are cascaded and each output value of a map is input to the next one. The cascaded maps has different control parameter and these parameters increase the key-space. The chaotic state of the trigonometric map belong to [0,infinity), we utilize this huge interval to increase the confusion and diffusion of our cryptosystem. Cascading the chaotic maps increases the cycle length and against the digital degradation of the keystream of our cryptosystem.

    Our proposed cryptosystem has ability against the attacks of the Baptista-type cryptosystems and the key-space of our proposed cryptosystem is 256!x10^76, which
    is big enough to resist all kinds of brute-force attacks. For a 256-gray-scale image, our cryptosystem changed it entropy from 7.255686 to 7.999289 after encrypting. Our proposed cryptosystem is among the fastest Baptista-type cryptosystems, the time for encrypting a 512x512 256-gray-scale image is 0.48 seconds. The ciphertext size generated by our cryptosystem is only slightly larger than the plaintext size. Our proposed cryptosystem is more secure and efficient than current existing Baptista-type crypto-systems. It is suitable for practical applications.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 1 1.3 Previous works 8 1.4 Research method 10 1.5 Organization of the thesis 11 Chapter 2 Baptista type cryptosystems 12 2.1 M. S. Baptista. 1998 12 2.1.1 Baptista original cryptosystem 12 2.1.2 The drawbacks of Baptista original cryptosystem 18 2.2 W. K. Wong et al. 2001 18 2.3 K. W. Wong 2002 21 2.4 K. W. Wong 2003 24 2.5 K. W. Wong 2003(2) 28 2.6 S. Li et al. 2003 & S. Li et al. 2004 31 2.7 F. J. Huang 2005 36 2.8 T. Xiang 2006 & Y. Wang et al. 2007 39 2.8.1 T. Xiang 2006 39 2.8.2 Y. Wang et al. 2007 43 Chapter 3 Cryptanalysis 45 3.1 Classical types of attacks 45 3.2 Jakimoski- Kocarev attack 46 3.3 One-time pad attacks 47 3.4 Entropy attacks 49 3.5 Key recovery of weakened version of the cipher 52 3.6 Cryptanalysis of dynamic look-up table based chaotic cryptosystem 54 Chapter 4 A Baptista type cryptosystem with cascaded chaotic maps 59 4.1 J. Wei et al. 2006 59 4.2 S. Behnia et al. 65 4.3 Cascading chaotic maps 68 Chapter 5 Experimental results and discussion 74 5.1 Security analysis 74 5.1.1 Key space analysis 76 5.1.2 Statistical analysis 76 5.1.3 Sensitivity analysis 80 5.1.4 Information entropy 82 5.2 Attack analysis 82 5.2.1 Jakimoski-Kocarev attack 83 5.2.2 One-time pad attack 83 5.2.3 Entropy attack 84 5.2.4 Key recovery attack 85 5.2.5 Attack on dynamic look-up table 86 5.2.6 Brute-force attack 86 5.3 Performance comparison 87 5.4 Discussion 95 Chapter 6 Conclusion 97

    [1] E. Alvarez, A. Fernandez, P. Garcia, J. Jimenez and A. Marcano, “New approach to chaotic encryption,” Physics Letters A, Vol. 263, Pages:373-375, 1999.
    [2] G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, Vol. 16, No. 8, Pages:2129-2151, 2006.
    [3] G. Alvarez, F. Montoya, M. Romera and G. Pastor, “Cryptanalysis of an ergodic chaotic cipher,” Physics Letters A, Vol. 311, Pages:172-179, 2003.
    [4] G. Alvarez, F. Montoya, M. Romera and G. Pastor, “Keystream cryptanalysis of a chaotic cryptographic method,” Computer Physics Communications, Vol. 156, Pages:205-207, 2004.
    [5] G. Alvarez, F. Montoya, M. Romera and G. Pastor, “Cryptanalysis of dynamic look-up table based chaotic cryptosystems,” Physics Letters A, Vol. 326, Pages:211-218, 2004.
    [6] S. Behnia, A. Akhshani, S. Ahadpour, H. Mahmodi and A. Akhavan, “A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps,” Physics Letters A, Vol. 366, Pages:391-396, 2007.
    [7] M. S. Baptista, “Cryptography with chaos,” Physics Letters A, Vol. 240, Pages:50-54, 1998.
    [8] Y. Chen and X. Liao, “Cryptanalysis on a modified Baptista-type cryptosystem with chaotic masking algorithm,” Physics Letters A, Vol. 342, Pages:389-396, 2005.
    [9] Douglas R. Stinson, “Cryptography: Theory and Practice”, 3rd edition, CRC Press.
    [10] J. Fridrich, ”Image encryption based on chaotic maps,” 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Vol. 2, Pages:1105-1110, 1997.
    [11] F. Huang and Z. H. Guan, “Cryptosystem using chaotic keys,” Chaos, Solitons and Fractals, Vol. 23, Pages:851-855, 2005.
    [12] F. Huang and Z. H. Guan, “A modified method of a class of recently presented cryptosystems,” Chaos, Solitons and Fractals, Vol. 23, Pages:1893-1899, 2005.
    [13] T. Habutsu, Y. Nishio, I. Sasase and S. Mori, “A secret key cryptosystem by iterating a chaotic map,” Advances in Cryptology — Eurocrypt ’91, Vol. 547, Pages:127-140, 1991.
    [14] M. A. Jafarizadeh, S. Behnia, S. Khorram and H. Nagshara, “Hierarchy of chaotic maps with an invariant measure,” Journal of Statistical Physics, Vol. 104, 2001.
    [15] G. Jakimoski and L. Kocarev, “Chaos and cryptograohy: block encryption ciphers based on chaotic maps,” IEEE Transaction on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 48, No. 2, Pages:163-169, 2001.
    [16] G. Jakimoski and L. Kocarev, “Analysis of some recently proposed chaos-based encryption algorithms,” Physics Letters A, Vol. 291, Pages:381-384, 2001.
    [17] L. Kocarev, “Chaos-based cryptography: A brief overview,” IEEE Circuits and Systems Magazine, Vol. 1, Pages:6-21, 2001.
    [18] L. Kocarev and Z. Tasev, “Piblic-key encryption based on chebyshev maps,” Proceedings of The 2003 International Symposium on Circuits and Systems ISCAS '03, Vol. 3, Pages:25-28, 2003.
    [19] S. Li, “Chaotic cryptography (2): Digital chaotic ciphers,” invited lecture, Department of Physics, Beijing Normal University, Beijing, China, slides are available online at http://www.hooklee.com/Talks/CC2.pdf.
    [20] S. Li, G. Chen and X. Mou, “On the dynamical degradation of digital piecewise linear chaotic maps,” International Journal of Bifuration and Chaos, Vol. 15, No. 10, Pages:3119-3151, 2005.
    [21] S. Li, G. Chen, K. W. Wong, X. Mou and Y. Cai, “Baptista-type chaotic cryptosystems: problems and countermeasures,” Physics Letters A, Vol. 332, Pages:368-375, 2004.
    [22] S. Li, X. Mou, Z. Ji, J. Zhang and Y. Cai, “Performance analysis of Jakimoski-Kocarev attack on a class of chaotic cryptosystems,” Physics Letters A, Vol. 307, Pages:22-28, 2003.
    [23] S. Li, X. Mou and Y. Cai, “Chaotic Cryptography in Digital World: State-of-the-Art, Problems and Solutions,” http://www.hooklee.com, 2003.
    [24] H. Lu, S. Wang, X. Li, G. Tang, J. Kuang, W. Ye and G. Hu, “A new spatiotemporally chaotic cryptosystem and its security and performance analyses,” Chaos, Vol. 14, No. 3, 2004.
    [25] F. Pichler and J. Scharinger, “Efficient image encryption based on chaotic maps,” Johannes Kepler University, Linz, Austria, preprint, 1996.
    [26] R. Tenny, L. S. Tsimring, L. Larson, and Henry D. I. Abarbanel, “Using distributed nonlinear dynamics for public key encryption,” Physical Review Letters, Vol. 90, No. 4, 2003.
    [27] K. W. Wong, “A fast chaotic cryptographic scheme with dynamic look-up table,” Physics Letters A, Vol. 298, Pages:238-242, 2002.
    [28] K. W. Wong, “A combined chaotic cryptographic and hashing scheme,” Physics Letters A, Vol. 307, Pages:292-298, 2003.
    [29] J. Wei, X. Liao, K. W. Wong and T. Xiang, “A new chaotic cryptosystem,” Chaos, Solitons and Fractals, Vol. 30, Pages:1143-1152, 2006.
    [30] K. W. Wong, S. W. Ho and C. K. Yung, “A chaotic cryptography scheme for generating short ciphertext,” Physics Letters A, Vol. 310, Pages:67-73, 2003.
    [31] W. K. Wong, L. P. Lee and K. W. Wong, “A modified chaotic cryptographic method,” Computer Physics Communications, Vol. 138, Pages:234-236, 2001.
    [32] Y. Wang, X. Liao, T. Xiang, K. W. Wong and D. Yang, “Cryptanalysis and improvement on a block cryptosystem based on iteration a chaotic map,” Physics Letters A, Vol. 363, Pages:277-281, 2007.
    [33] T. Xiang, X. Liao, G. Tang, Y. Chen and K. W. Wong, “A novel block cryptosystem based on iterating a chaotic map,” Physics Letters A, Vol. 349, Pages:109-115, 2006.
    [34] H. Zhou and X. T. Ling, “Problems with the chaotic inverse system encryption approach,” IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, Vol. 44, No. 3, 1997.

    下載圖示 校內:2011-07-30公開
    校外:2011-07-30公開
    QR CODE