簡易檢索 / 詳目顯示

研究生: 王宏晉
Wang, Hung-Chin
論文名稱: 巨磁阻系統中固有雙二次磁性交互作用的起源
Origin of intrinsic biquadratic magnetic exchange coupling in giant-magnetoresistance system
指導教授: 張景皓
Chang, Ching-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 87
中文關鍵詞: 巨磁阻雙二次層間交互作用自旋電子學磁性材料
外文關鍵詞: giant-magnetoresistance, biquadratic interlayer exchange coupling, Spintronics, magnetic materials
相關次數: 點閱:107下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 巨磁阻系統的廣泛應用和發展對訊息技術領域帶來了巨大的影響,特別是在硬 碟 (HDD) 等儲存設備的性能提升方面。這項技術自 1988 年首次被引入以來,已經在 硬碟的讀取傳感器中得到了廣泛應用,推動了儲存密度的提高,使得硬碟變得更加 小型化且容量更大。
    本論文專注於探討巨磁阻系統中的雙二次層間交互作用項 (J2),這是影響磁性結 構排列和性能的一個關鍵因素。文章開頭回顧巨磁阻效應的歷史,過往的重心主要 在了解雙線性層間交互作用項 (J1),釐清層間交互作用對巨磁阻系統中的影響。
    進一步,我們討論巨磁阻系統中鐵磁層磁矩排列的非傳統性,即雙二次系統 (biquadratic system)。這一現象的根本原因為兩個鐵磁性材料之間引發的 J2。藉由探討非傳統巨磁阻系統的物理模型,尤其是金屬間隔層中未成對自旋的局部電子態, 提供了對這種排列機制的深入解釋。
    我們選擇三層的巨磁阻系統進行模擬,金屬層和鐵磁層的結構形成一個量子井, 將電子約束在特定區域內,影響著電子的運動行為,藉由量子井的概念與計算方法, 我們可以快速的預測巨磁阻系統的定性。
    文中對於 J1 和 J2 的探討,得到 J1 是系統總能量中的主導項,對系統的磁矩穩 定性起著至關重要的作用。相比之下,J2 的作用較小,主要影響磁矩的非共線排列。 然而,J2 的微小影響仍然可以改變系統的磁矩和穩定性,並牽扯到電子自旋在系統 中的狀態。
    本文旨在釐清雙二次系統出現的條件,研究中討論了改變金屬層厚度對 J1 和 J2 的影響。特別是在 J1 為零的情況下,系統更傾向磁矩的垂直排列,並提出 J1 和 J2 相位差的機制,以實現控制二次系統的出現。
    整體而言,本文通過深入研究巨磁阻系統,揭示 J2 在系統中的重要性。這種理 解有望促進巨磁阻技術的進一步發展,尤其是在自旋電子學、磁感測器和磁性記憶 體等領域的應用中。

    The widespread application and development of giant-magnetoresistance (GMR) systems have had a profound impact on the field of information technology, particularly in enhancing the performance of storage devices such as hard disk drives (HDDs). Since its introduction in 1988, this technology has found extensive use in the read sensors of HDDs, driving an increase in storage density and allowing for smaller, more capacious hard drives.
    This thesis focuses on exploring the interlayer coupling term known as the biquadratic interlayer exchange coupling (J2) within GMR systems. We begin by reviewing the history of GMR effects, emphasizing the historical focus on understanding the bilinear interlayer ex- change coupling (J1) and clarifying its importance in GMR systems.
    Furthermore, we focus on the unconventional magnetic arrangement in ferromagnetic layers within GMR systems, known as the biquadratic system. The fundamental cause of this phenomenon is attributed to the J2 coupling between two ferromagnetic bodies, resulting in a unconventional arrangement. By delving into the physical model of J2, particularly the local electronic states of unpaired spins in non-magnetic metal spacer layers, we provide a comprehensive explanation of this arrangement mechanism.
    To better comprehend the system’s behavior, a three-layer GMR system is selected for simulation. This choice considers the formation of a quantum well, constraining electrons to specific regions and affecting their motion behavior. Utilizing the concept of the quantum well and computational methods, we can quickly predict the qualitative behavior of GMR systems.
    In discussing the influence of J1 and J2, we find that J1 is the dominant term in the total energy of the system, contributing significantly to the overall energy of metal multilayer systems. J1 plays a crucial role in the magnetic domain structure and stability of the system. In contrast, the role of J2 is relatively minor, primarily affecting the non-collinear arrangement of magnetic moments and introducing anisotropy. However, the slight impact of J2 can still modify the magnetic domain structure and stability, influencing the dynamics of spin.
    To gain a clear understanding of the conditions under which the biquadratic system appears, we discuss the impact of changing the thickness of the metal layers on J1 and J2. Especially in the case where J1 is zero, the system is more likely to achieve a vertical arrangement of magnetic moments. We propose understanding the mechanism of the phase difference be- tween J1 and J2 to maximize the occurrence of the biquadratic system.
    In conclusion, this thesis, through in-depth research into the biquadratic coupling term (J2) within GMR systems, reveals its importance in system performance. This understanding is expected to promote further development of GMR technology, especially in applications such as spintronics, magnetic sensors, and magnetic memory.

    摘要 i Abstract iii 英文延伸摘要 v 誌謝 xvi 目錄 xviii 圖片xx Chapter 1 緒論 1 1.1研究動機 1 1.2 研究目的與論文架構 2 Chapter 2 文獻回顧與理論 4 2.1巨磁阻的介紹 4 2.1.1 發現巨磁阻系統 4 2.1.2巨磁阻效應 6 2.2 量子力學中的巨磁阻系統:量子井態(QWS)的發生 6 2.2.1 巨磁阻系統跟量子井的關係6 2.2.2 量子共振的引發 7 2.2.3 量子井中的態密度7 2.3 多層膜的層間交互作用(IEC) 9 2.3.1 RKKY跟巨磁阻的關係9 2.3.2 層間交互作用的能量表達式10 2.3.3 層間交互作用(J1&J2) 11 2.3.4 J1的實驗量測及DFT模擬12 2.3.5 實驗中的雙二次系統以及J2 13 Chapter 3 研究方法 17 3.1量子井的建構17 3.2系統參數25 3.3量子井的性質26 3.3.1總能量26 3.3.2 波函數與機率密度27 3.3.3 特殊的量子井態 28 3.4 系統能量:來自磁矩的層間交互作用28 3.5自由能30 Chapter 4 結果與討論 32 4.1 巨磁阻系統的能量及其特性32 4.1.1 平行及反平行系統的能帶結構32 4.1.2 磁矩排列的交替變化34 4.1.3 平行及反平行系統的波函數與機率密度36 4.1.4 雙二次系統的能帶結構41 4.1.5 雙二次系統的波函數與機率密度41 4.1.6 雙二次系統中的特殊量子井態45 4.2層間交互作用48 4.2.1重現J1 48 4.2.2 J2的性質與討論 51 4.2.3 偏好雙二次系統的條件52 4.2.4 巨磁阻系統的固有性質55 4.3考慮亂度59 Chapter 5 結論與展望 61 5.1結論61 5.2展望63 參考文獻 64

    [1] J. G. J. Zhu. New heights for hard disk drives. Materials Today, 6(7-8):22–31, 2003.
    [2] R. Weiss, R. Mattheis, and G. Reiss. Advanced giant magnetoresistance technology for measurement applications. Measurement Science and Technology, 24(8):082001, jul 2013.
    [3] Z. R. Nunn, C. Abert, D. Suess, and E. Girt. Control of the noncollinear interlayer exchange coupling. Science Advances, 6(48):eabd8861, 2020.
    [4] S.O.Demokritov.Biquadraticinterlayercouplinginlayeredmagneticsystems.Journal of Physics D: Applied Physics, 31(8):925, apr 1998.
    [5] C.H.Chang and T.M.Hong. Switching off the magnetic exchange coupling by quantum resonances. Phys. Rev. B, 85:214415, Jun 2012.
    [6] P. Bruno. Oscillations of interlayer exchange coupling vs. ferromagnetic-layers thick- ness. Europhysics Letters, 23(8):615, sep 1993.
    [7] S. M. Thompson. The discovery, development and future of gmr: The nobel prize 2007. Journal of Physics D: Applied Physics, 41(9):093001, mar 2008.
    [8] J.A.C. Bland and B. Heinrich. Ultrathin Magnetic Structures III: Fundamentals of Nanomagnetism. Springer-Verlag Berlin Heidelberg, 2005.
    [9] C. H. Chang, K. P. Dou, Y. C. Chen, T. M. Hong, and C. C. Kaun. Engineering the interlayer exchange coupling in magnetic trilayers. Scientific reports, 5(1):16844, 2015.
    [10] P. Bruno. Theory of interlayer magnetic coupling. Phys. Rev. B, 52:411–439, Jul 1995.
    [11] D. L. L. Mills and J. A. C. Bland. Nanomagnetism: ultrathin films, multilayers and nanostructures. Elsevier, 2006.
    [12] C. H. Chang and T. M Hong. Interlayer coupling enhanced by the interface roughness: A perturbative method. Phys. Rev. B, 79:054415, Feb 2009.
    [13] Z. Q. Qiu and N. V. Smith. Quantum well states and oscillatory magnetic interlayer coupling. Journal of Physics: Condensed Matter, 14(8):R169, feb 2002.
    [14] J. Besler, S. Myrtle, and E. Girt. Noncollinear interlayer exchange coupling across irfe spacer layers. Journal of Magnetism and Magnetic Materials, 585:171109, 2023.
    [15] Z. N. Hu, J. Z. Wang, and B. Z. Li. A double-quantum-well model of the exchange coupling in fe/znse/fe. Journal of Physics: Condensed Matter, 13(11):L215, mar 2001.
    [16] A. Azevedo, C. Chesman, S. M. Rezende, F. M. DeAguiar, X. Bian, and S. S. P. Parkin. Biquadratic exchange coupling in sputtered (100) fe/cr/fe. Phys. Rev. Lett., 76:4837– 4840, Jun 1996.
    [17] C. Chesman, M. A. Lucena, M. C. De Moura, A. Azevedo, F. M. De Aguiar, S. M. Rezende, and S. S. P. Parkin. Magnetic trilayers with bilinear and biquadratic exchange couplings: Criteria for the measurement of J1 and J2. Phys. Rev. B, 58:101–104, Jul 1998.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE