簡易檢索 / 詳目顯示

研究生: 郭品妤
Kuo, Pin-Yu
論文名稱: 探討長鏈非編碼核醣核酸LincRNA-p21 於全身紅斑性狼瘡疾病病程的角色
A role of pro-apoptotic noncoding RNA lincRNA-p21 in disease progression of systemic lupus erythematosus
指導教授: 王崇任
Wang, Chrong-Reen
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 49
中文關鍵詞: 全身紅斑性狼瘡長鏈非編碼型RNA凋亡細胞狼瘡腎炎肺出血
外文關鍵詞: Systemic lupus erythematosus, Long non-coding RNA (LncRNA), LincRNA-p21, Apoptosis, Lupus nephritis, Pulmonary hemorrhage, CRISPRi
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全身紅斑性狼瘡 (systemic lupus erythematosus) 是一個慢性的自體免疫性疾病會侵犯全身各種器官,並以其複雜多變的臨床表現而聞名。患者體內存在著一個失衡的生理反應,具有多量的免疫細胞產生凋亡,隨著血液循環系統流竄到全身的組織。另一方面,具有不健全的凋亡細胞清除能力。由於兩種機制的失衡促使自體抗體及免疫複合物的產生,並沉積在標靶器官。雖然這一個失衡機制的理論已經被發表多年,但是凋亡細胞的產生對於全身紅斑性狼瘡疾病病程的影響仍須進一步探討。長鏈非編碼型RNA在近幾年被發現可以在前轉錄及後轉錄時期進行基因調控,而在先前的研究中也發現了一些長鏈非編碼型RNA於自體免疫性疾病中扮演角色。LincRNA-p21是一種長鏈非編碼型RNA,經由活化caspase-3來促進細胞凋亡。由於目前尚未釐清lincRNA-p21的表現是否與全身紅斑性狼瘡具關聯性,因此本研究主要是探討lincRNA-p21在全身紅斑性狼瘡疾病病程中所扮演的角色。從臨床檢體中我們發現紅斑性狼瘡患者的週邊單核球細胞以及CD4+ T細胞中lincRNA-p21分子表現量高於健康受試者。在狼瘡腎炎的病患中lincRNA-p21具有顯著的高量的表現,並且與全身紅斑性狼瘡臨床嚴重度指標 (SLEDAI-2K) 以及腎炎病人每日蛋白尿總量呈正相關。此外,狼瘡肺出血病人相較於健康受試者具有較高的lincRNA-p21表現量。除此之外,在臨床檢體中也證實microRNA-181a可以作為被lincRNA-p21抑制的候選基因。為了探討lincRNA-p21在細胞內的生理表現,我們構築了以clustered regularly interspaced short palindromic repeats interference (CRISPRi) 所介導的基因編輯敲落系統藉以降低細胞內lincRNA-p21的表現,結果發現抑制表達lincRNA-p21的細胞在經過doxorubicin 的誘導後能顯著抑制凋亡細胞的形成,並且回復microRNA-181a的表現。以pristane 腹腔注射誘導出的類紅斑性狼瘡小鼠中發現CD4+ T細胞中lincRNA-p21的表現高於正常小鼠,於狼瘡腎炎小鼠 (BALB/c) 模式中誘導後期腎臟lincRNA-p21 表現量較對照組小鼠高, 而在肺出血小鼠 (C57BL/6) 模式中肺臟的lincRNA-p21 表現量在嚴重肺出血小鼠中明顯高於對照組小鼠。本研究結果顯示lincRNA-p21的表現在全身紅斑性狼瘡中能藉由促進凋亡細胞的生成來影響疾病病程。

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with relapsing/remitting courses and heterogeneous clinical presentations such as lupus nephritis (LN) and pulmonary hemorrhage (PH). The imbalance between accelerated cell apoptosis and clearance deficiency in SLE induce the accumulation of nuclear autoantigens and the production of autoantibodies, resulting in immune complex deposition in miscellaneous organs and tissues. Despite the established character of accelerated apoptosis in the development of SLE, its role in the disease progression remains to be elucidated in such patients. Previous studies have shown that lincRNA-p21, a pro-apoptotic long non-coding RNA (lncRNA), can up-regulate the pro-apoptotic process through activating caspase-3. We found that elevated levels of lincRNA-p21 in peripheral mononuclear cells and purified CD4+ T cells from SLE patients. Furthermore, its expression levels were higher in LN patients (class IV) and positively correlated with disease activity scores (SLEDAI-2K) and daily proteinuria amounts. In addition, lupus patients with PH had higher lincRNA-p21 expression levels than healthy subjects. From the predicted characters of lincRNA-p21, we examined whether this lncRNA can act as a competitive endogenous RNA to inhibit the microRNA expression. We further knocked down the expression of lincRNA-p21 by using the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system to inhibit the formation of apoptotic cells through reducing caspase-3 activation and rescue the expression of miR-181a. Our animal experiments revealed that pristane-induced BALB/c and C57BL/6 lupus mouse models could exhibit clinicopathological manifestations similar to LN and PH, respectively. Lupus mouse models demonstrated increased levels of lincRNA-p21 in purified peripheral CD4+ T cells. In the LN model, higher renal expression levels of lincRNA-p21 could be detected in pristine-injected mice. In the PH model, there were higher expression levels of lincRNA-p21 in pristine-induced lupus mice with severe bleeding than saline-injected control ones. In conclusion, our in vitro and in vivo results demonstrate that up-regulated pro-apoptotic lincRNA-p21 expression plays a pathogenic role in the disease progression of SLE.

    中文摘要 I Abstract II Acknowledgements III Contents IV Figure contents VIII Abbreviation IX Introduction 1 Systemic lupus erythematosus (SLE) 1 The imbalance between accelerated apoptosis and clearance deficiency in SLE 2 Long noncoding RNA (LncRNA) and rheumatology disorders 3 Long intergenic noncoding RNA-p21 (lincRNA-p21) 4 MicroRNA-181a (miR-181a) in SLE 4 Tetramethylpentadecane (pristane)-induced lupus mouse model 5 Specific aim 6 Materials 7 Reagents 7 Primers 7 TaqMan 8 Microbeads 8 Primary antibodies 8 Secondary antibodies 8 Flow cytometry 9 Immunofluorescence 9 Immunohistochemistry 9 ELISA 9 Methods 10 Patient samples and isolation of peripheral blood mononuclear cells 10 Isolation of human CD4+ T cells and CD14+ monocytes 10 Doxorubicin (DOX)-induced cell apoptosis 10 Induction of pristane-induced lupus mouse models 11 Isolation of mouse CD4+ T cells and CD19+ B cells 11 Quantitative real-time polymerase chain reaction 11 Construction of lentivirus-based CRISPRi targeting lincRNA-p21 12 Production of lentiviral (LV) particles 12 Production of stable transfectants 13 Immunoblotting 13 Enzyme-linked immunosorbent assay (ELISA) 13 Histopathologic analysis 13 Immunofluorescent staining 14 Proteinuria detection 14 Statistical analysis 14 Results 15 A positive correlation of lincRNA-p21 expression on active SLE with disease activity in contrast to H19 levels 15 Up-regulated lincRNA-p21 expression in CD14+ monocytes and CD4+ T cells from SLE patients 16 Expression of miR-181a gene family members in SLE patients 16 Increased levels of lincRNA-p21 with higher apoptotic cell percentages in doxorubicin (DOX)-treated Jurkat cells 16 Reduced miR-181a-5p expression levels and apoptotic cells formation in DOX-induced HEK293T after lincRNA-p21 knockdown 17 Lupus-like disease manifestations in BALB/c mice after receiving pristane injection 17 Elevated expression of lincRNA-p21 and caspase-3 in the lupus-like model 17 Develop of PH and anemia in C57BL/6 mice after pristane induction 18 Higher levels of the immune complex and apoptotic cell numbers in lung tissues from lupus mice with PH 18 Up-regulated expression of lincRNA-p21 in CD4+ T cells from lupus mice with PH 18 Increased expression of caspase-3 in the PH model 19 Elevated lincRNA-p21 expression in PBMCs and the presence of TUNEL-positive cells in lung tissues from SLE patients with PH 19 Decreased comparative Ct levels of TCR-Z and IL-2 in CD4+ T cells from SLE 19 Decreased expression levels of IL-2 and TCR-Z after treatment of doxorubicin in Jurkat cells 20 Silencing lincRNA-p21 in Jurkat rescued the expression levels of ZAP70 and TCR-ξ 20 Discussion 21 Conclusion 24 Figure legends 25 Figure 1. Expression of long non-coding RNAs (lncRNAs) in peripheral mononuclear blood cells (PBMCs) from SLE patients and healthy donors. 25 Figure 2. LincRNA-p21 expression levels in active SLE and healthy controls. 26 Figure 3. LincRNA-p21 expression in immune cells. 27 Figure 4. Expression of microRNA-181a (miR-181a) in healthy controls and SLE patients. 28 Figure 5. Treatment with doxorubicin induces apoptosis in Jurkat cells. 29 Figure 6. Silencing of lincRNA-p21 in HEK293T cells. 30 Figure 7. Lupus-like disease manifestations in BALB/c mice after pristane injection. 32 Figure 8. Development of pristane-induced pulmonary hemorrhage in C57BL/6 mice. 33 Figure 9. Hemogram data in C57BL/6 mice from saline and pristane induction groups. 34 Figure 10. IgG expression levels and apoptotic cell numbers in the lung tissues from pristane-induced C57BL/6 mice. 35 Figure 11. Expression of lincRNA-p21 in lung tissues, CD19+ B cell and CD4+ T cell. 36 Figure 12. Elevated expression of pro-caspase-3 in pulmonary hemorrhage model 37 Figure 13. Apoptotic cells detected in SLE patients with pulmonary hemorrhage. 38 Figure 14. Expression levels of lincRNA-p21 in pulmonary hemorrhage patients 39 Figure 15. Expression levels of IL-2 and TCR-Z in human CD4+ T cells. 40 Figure 16. Expression levels of IL-2 and TCR-Z in doxorubicin (DOX)-treated Jurkat cells. 41 Figure 17. Silencing of lincRNA-p21 in Jurkat cells rescues the expression levels of ZAP70 and TCR-ξ. 42 References 43 Appendix 49 Figure 1. Vector for constructing lentivirus-based CRISPR interference system targeting lincRNA-p21 49

    References
    Ao, X., Jiang, M., Zhou, J., Liang, H., Xia, H., and Chen, G. (2019). lincRNA‑p21 inhibits the progression of non‑small cell lung cancer via targeting miR‑17‑5p. Oncol Rep 41, 789-800.
    Bengtsson, A.A., Rylander, L., Hagmar, L., Nived, O., and Sturfelt, G. (2002). Risk factors for developing systemic lupus erythematosus: a case–control study in southern Sweden. Rheumatology 41, 563-571.
    Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., and Rinn, J.L. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25, 1915-1927.
    Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A., and Bozzoni, I. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358-369.
    Chen, C.Z., Li, L., Lodish, H.F., and Bartel, D.P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86.
    Chowdhary, V.R., Grande, J.P., Luthra, H.S., and David, C.S. (2007). Characterization of haemorrhagic pulmonary capillaritis: another manifestation of Pristane-induced lupus. Rheumatology (Oxford) 46, 1405-1410.
    Crispín, J.C., Kyttaris, V.C., Juang, Y.T., and Tsokos, G.C. (2008). How signaling and gene transcription aberrations dictate the systemic lupus erythematosus T cell phenotype. Trends Immunol 29, 110-115.
    D'Cruz, D.P., Khamashta, M.A., and Hughes, G.R.V. (2007). Systemic lupus erythematosus. The Lancet 369, 587-596.
    Dhir, V., Singh, A.P., Aggarwal, A., Naik, S., and Misra, R. (2009). Increased T-lymphocyte apoptosis in lupus correlates with disease activity and may be responsible for reduced T-cell frequency: a cross-sectional and longitudinal study. Lupus 18, 785-791.
    Dimitrova, N., Zamudio, J.R., Jong, R.M., Soukup, D., Resnick, R., Sarma, K., Ward, A.J., Raj, A., Lee, J.T., Sharp, P.A., et al. (2014). LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell 54, 777-790.
    Fu, J., Shi, H., Wang, B., Zhan, T., Shao, Y., Ye, L., Wu, S., Yu, C., and Zheng, L. (2019). LncRNA PVT1 links Myc to glycolytic metabolism upon CD4(+) T cell activation and Sjogren's syndrome-like autoimmune response. J Autoimmun, 102358.
    Gao, Y., Li, S., Zhang, Z., Yu, X., and Zheng, J. (2018). The Role of Long Non-coding RNAs in the Pathogenesis of RA, SLE, and SS. Frontiers in Medicine 5.
    Hadjicharalambous, M.R., and Lindsay, M.A. (2019). Long Non-Coding RNAs and the Innate Immune Response. Noncoding RNA 5.
    Hall, J.R., Messenger, Z.J., Tam, H.W., Phillips, S.L., Recio, L., and Smart, R.C. (2015a). Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis 6, e1700.
    Hall, J.R., Messenger, Z.J., Tam, H.W., Phillips, S.L., Recio, L., and Smart, R.C. (2015b). Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis 6, e1700.
    Heward, J.A., and Lindsay, M.A. (2014). Long non-coding RNAs in the regulation of the immune response. Trends Immunol 35, 408-419.
    Holdt, L.M., and Teupser, D. (2018). Long Noncoding RNA ANRIL: Lnc-ing Genetic Variation at the Chromosome 9p21 Locus to Molecular Mechanisms of Atherosclerosis. Frontiers in Cardiovascular Medicine 5.
    Honarpisheh, M., Köhler, P., von Rauchhaupt, E., and Lech, M. (2018). The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis. J Immunol Res 2018, 4126106.
    Hu, G., Tang, Q., Sharma, S., Yu, F., Escobar, T.M., Muljo, S.A., Zhu, J., and Zhao, K. (2013). Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat Immunol 14, 1190-1198.
    Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M.J., Kenzelmann-Broz, D., Khalil, A.M., Zuk, O., Amit, I., Rabani, M., et al. (2010). A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409-419.
    Hur, K., Kim, S.-H., and Kim, J.-M. (2019). Potential Implications of Long Noncoding RNAs in Autoimmune Diseases. Immune Netw 19.
    Katsuyama, T., Li, H., Comte, D., Tsokos, G.C., and Moulton, V.R. (2019). Splicing factor SRSF1 controls T cell hyperactivity and systemic autoimmunity. J Clin Invest 129, 5411-5423.
    Katsuyama, T., Tsokos, G.C., and Moulton, V.R. (2018). Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus. Front Immunol 9, 1088.
    Kaul, A., Gordon, C., Crow, M.K., Touma, Z., Urowitz, M.B., van Vollenhoven, R., Ruiz-Irastorza, G., and Hughes, G. (2016). Systemic lupus erythematosus. Nat Rev Dis Primers 2, 16039.
    Krishnan, S., Kiang, J.G., Fisher, C.U., Nambiar, M.P., Nguyen, H.T., Kyttaris, V.C., Chowdhury, B., Rus, V., and Tsokos, G.C. (2005). Increased caspase-3 expression and activity contribute to reduced CD3zeta expression in systemic lupus erythematosus T cells. J Immunol 175, 3417-3423.
    Lashine, Y.A., Seoudi, A.M., Salah, S., and Abdelaziz, A.I. (2011). Expression signature of microRNA-181-a reveals its crucial role in the pathogenesis of paediatric systemic lupus erythematosus. Clin Exp Rheumatol 29, 351-357.
    Li, Q.J., Chau, J., Ebert, P.J., Sylvester, G., Min, H., Liu, G., Braich, R., Manoharan, M., Soutschek, J., Skare, P., et al. (2007). miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147-161.
    Li, R., Fang, L., Pu, Q., Bu, H., Zhu, P., Chen, Z., Yu, M., Li, X., Weiland, T., Bansal, A., et al. (2018). MEG3-4 is a miRNA decoy that regulates IL-1beta abundance to initiate and then limit inflammation to prevent sepsis during lung infection. Sci Signal 11.
    Li, W., Titov, A.A., and Morel, L. (2017). An update on lupus animal models. Curr Opin Rheumatol 29, 434-441.
    Mohan, C., and Putterman, C. (2015). Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat Rev Nephrol 11, 329-341.
    Motawi, T.K., Mohsen, D.A., El-Maraghy, S.A., and Kortam, M.A. (2016). MicroRNA-21, microRNA-181a and microRNA-196a as potential biomarkers in adult Egyptian patients with systemic lupus erythematosus. Chem Biol Interact 260, 110-116.
    Moulton, V.R., and Tsokos, G.C. (2011). Abnormalities of T cell signaling in systemic lupus erythematosus. Arthritis Research & Therapy 13, 207.
    Osio-Salido, E., and Manapat-Reyes, H. (2010). Epidemiology of systemic lupus erythematosus in Asia. Lupus 19, 1365-1373.
    Pearson, M.J., and Jones, S.W. (2016). Review: Long Noncoding RNAs in the Regulation of Inflammatory Pathways in Rheumatoid Arthritis and Osteoarthritis. Arthritis Rheumatol 68, 2575-2583.
    Quinn, J.J., and Chang, H.Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17, 47-62.
    Ranzani, V., Rossetti, G., Panzeri, I., Arrigoni, A., Bonnal, R.J.P., Curti, S., Gruarin, P., Provasi, E., Sugliano, E., Marconi, M., et al. (2015). The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nature Immunology 16, 318-325.
    Reeves, W.H., Lee, P.Y., Weinstein, J.S., Satoh, M., and Lu, L. (2009). Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends Immunol 30, 455-464.
    Satoh, M., and Reeves, W.H. (1994). Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. J Exp Med 180, 2341-2346.
    Song, J., Kim, D., Han, J., Kim, Y., Lee, M., and Jin, E.J. (2015). PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin Exp Med 15, 121-126.
    Spurlock, C.F., 3rd, Tossberg, J.T., Matlock, B.K., Olsen, N.J., and Aune, T.M. (2014). Methotrexate inhibits NF-kappaB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol 66, 2947-2957.
    Suarez-Fueyo, A., Bradley, S.J., Klatzmann, D., and Tsokos, G.C. (2017). T cells and autoimmune kidney disease. Nat Rev Nephrol 13, 329-343.
    Tang, S.S., Zheng, B.Y., and Xiong, X.D. (2015). LincRNA-p21: Implications in Human Diseases. Int J Mol Sci 16, 18732-18740.
    Tang, Y., Zhou, T., Yu, X., Xue, Z., and Shen, N. (2017). The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol 13, 657-669.
    Thin, K.Z., Liu, X., Feng, X., Raveendran, S., and Tu, J.C. (2018). LncRNA-DANCR: A valuable cancer related long non-coding RNA for human cancers. Pathol Res Pract 214, 801-805.
    Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E., and Chang, H.Y. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689-693.
    Tsokos, G.C. (2011). Systemic Lupus Erythematosus. New England Journal of Medicine 365, 2110-2121.
    van den Hoogen, L.L., Rossato, M., Lopes, A.P., Pandit, A., Bekker, C.P.J., Fritsch-Stork, R.D.E., van Roon, J.A.G., and Radstake, T. (2018). microRNA downregulation in plasmacytoid dendritic cells in interferon-positive systemic lupus erythematosus and antiphospholipid syndrome. Rheumatology (Oxford) 57, 1669-1674.
    Vinuesa, C.G., Rigby, R.J., and Yu, D. (2009). Logic and extent of miRNA-mediated control of autoimmune gene expression. Int Rev Immunol 28, 112-138.
    Wang, C.R., Liu, M.F., Weng, C.T., Lin, W.C., Li, W.T., and Tsai, H.W. (2018). Systemic lupus erythematosus-associated diffuse alveolar haemorrhage: a single-centre experience in Han Chinese patients. Scand J Rheumatol 47, 392-399.
    Weening, J.J., D'Agati, V.D., Schwartz, M.M., Seshan, S.V., Alpers, C.E., Appel, G.B., Balow, J.E., Bruijn, J.A., Cook, T., Ferrario, F., et al. (2004). The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol 15, 241-250.
    Wu, G.C., Pan, H.F., Leng, R.X., Wang, D.G., Li, X.P., Li, X.M., and Ye, D.Q. (2015). Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun Rev 14, 798-805.
    Yang, F., Zhang, H., Mei, Y., and Wu, M. (2014). Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect. Mol Cell 53, 88-100.
    Yap, D.Y., and Chan, T.M. (2015). Lupus Nephritis in Asia: Clinical Features and Management. Kidney Dis (Basel) 1, 100-109.
    Ye, Y., He, X., Lu, F., Mao, H., Zhu, Z., Yao, L., Luo, W., Sun, X., Wang, B., Qian, C., et al. (2018). A lincRNA-p21/miR-181 family feedback loop regulates microglial activation during systemic LPS- and MPTP- induced neuroinflammation. Cell Death Dis 9, 803.
    Yu, F., Guo, Y., Chen, B., Shi, L., Dong, P., Zhou, M., and Zheng, J. (2017a). LincRNA-p21 Inhibits the Wnt/β-Catenin Pathway in Activated Hepatic Stellate Cells via Sponging MicroRNA-17-5p. Cell Physiol Biochem 41, 1970-1980.
    Yu, F., Haas, M., Glassock, R., and Zhao, M.H. (2017b). Redefining lupus nephritis: clinical implications of pathophysiologic subtypes. Nat Rev Nephrol 13, 483-495.
    Zaratiegui, M., Irvine, D.V., and Martienssen, R.A. (2007). Noncoding RNAs and gene silencing. Cell 128, 763-776.
    Zhang, F., Wu, L., Qian, J., Qu, B., Xia, S., La, T., Wu, Y., Ma, J., Zeng, J., Guo, Q., et al. (2016). Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. J Autoimmun 75, 96-104.
    Zhou, S., Wang, Y., Meng, Y., Xiao, C., Liu, Z., Brohawn, P., Higgs, B.W., Jallal, B., Jia, Q., Qu, B., et al. (2016). In Vivo Therapeutic Success of MicroRNA-155 Antagomir in a Mouse Model of Lupus Alveolar Hemorrhage. Arthritis & Rheumatology 68, 953-964.
    Zhuang, H., Han, S., Lee, P.Y., Khaybullin, R., Shumyak, S., Lu, L., Chatha, A., Afaneh, A., Zhang, Y., Xie, C., et al. (2017). Pathogenesis of Diffuse Alveolar Hemorrhage in Murine Lupus. Arthritis Rheumatol 69, 1280-1293.

    下載圖示 校內:2025-07-30公開
    校外:2025-07-30公開
    QR CODE