簡易檢索 / 詳目顯示

研究生: 鍾瑞傑
Chung, Jui-Chieh
論文名稱: 無人載具運動感測器的研發
The Development of the Motion Sensor for Unmanned Vehicles
指導教授: 謝成
Hsieh, Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 54
中文關鍵詞: 無人載具運動感測器
外文關鍵詞: UAV, Motion Sensor
相關次數: 點閱:112下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於無人飛行器具有重量輕、攜帶方便且機動性高的優點,其應用範圍和領域逐漸擴大。目前在無人載具的控制技術上,為了使載具更穩定,通常會回饋其姿態來控制,所以如何獲得載具姿態的訊息是非常重要的一個課題。而現在最主要的作法就是購買姿態儀。但其價格昂貴、資料更新低,且不一定能滿足我們飛行的需求,而本研究的目的就是在於自行研發一個運動感測器,以提供載具控制時所需的訊息。
    在這個研究中,我們使用MEMS(Micro Electro Mechanical Systems)的感測器,並搭配運算功能強大的ARM 7系列微處理器。過程中,我們建立完整的演算法模型,並自行撰寫程式與監控軟體來驗證整個理論。

    Because of the advantage of light weight, high mobility and easy to carry, the range of applications for unmanned aerial vehicle (UAV) are expended gradually. When we talk about the control technology for unmanned aerial vehicle, we usually feedback the attitude of UAV to the control system in order to make it more stable. So, how to get the attitude information of vehicle is a very important issue. And now, buying the attitude instrument is the main approach for us. But the cost of attitude instrument is very expensive and the update rate is too low to meet the needs of our flight. The purpose of this paper is to develop a motion sensor which can supply the information of UAV to the control system.
    In this paper, we use the low cost MEMS-Based sensors with powerful ARM 7 series processor. We build the complete model for algorithm and we also write the code and software to verify the whole system.

    第一章 緒論 1 1-1前言 1 1-2研究動機 1 1-3研究目標與方法 2 1-4文獻回顧 3 1-5章節安排 6 第二章 理論回顧 7 2-1參考座標系的定義和之間的轉換 7 2-1.1慣性座標系(Inertial frame) 7 2-1.2地球座標系(Earth frame) 8 2-1.3當地水平座標系(Local level frame) 9 2-1.4體座標系(Body-fixed frame) 9 2-1.5座標轉換 10 2-2慣性量測裝置的組成 13 2-3卡爾曼濾波器 13 第三章 運動感測器系統架構 22 3-1整體系統架構 22 3-2運算核心 23 3-3感測元件 24 3-4監測系統 27 第四章 演算法數學模型的推導 28 4-1校正方程式的推導 28 4-2姿態演算法的架構及推導 32 第五章 演算法模擬與比較 39 5-1靜態和動態測試 39 5-1.1靜態測試 (取樣頻率為100 Hz) 39 5-1.2動態測試 (取樣頻率為100 Hz) 42 5-2旋轉馬達平台測試 44 5-2.1馬達等速旋轉 (取樣頻率為50 Hz) 44 5-2.2馬達旋波輸出 (取樣頻率為50 Hz) 47 第六章 結論與未來展望 50 6-1結論 50 6-2未來展望 51 參考文獻 52

    [1] Katsuhiko Ogata. 1987. Discrete-Time Control Systems. Englewood Cliffs, N.J. : Prentice-Hall.
    [2] Jerry M. Mendel. 1987. Lessons in Digital Estimation Theory. Englewood Cliffs, N.J. : Prentice-Hall.
    [3] James R. Wertz. 1978. Spacecraft Attitude Determination and Control. Dordrecht; Boston: Kluwer Academic Pub.
    [4] Thomas R. Kane, Peter W. Likins, David A. Levinson. 1981. SPACECRAFT DYNAMICS. McGraw Hill.
    [5] Mohinder S. Grewal, Angus P. Andrews. 2001. Kalman filtering: theory and practice using MATLAB 2nd ed. New York :Wiley
    [6] Kalman, R. E. 1960. A New Approach to Linear Filtering and Prediction Problems. Transaction of the ASME - Journal of Basic Engineering, pp. 35-45.
    [7] Masaru Naruoka, Takeshi Tsuchiya. 2007. A Powerful Autopilot System for Small UAVs with Accurate INS/GPS Integrated Navigation. JSASS-KSAS Joint International Symposium on Aerospace Engineering, Kitakyushu, Japan.
    [8] Michael J. Caruso. Application of Magnetoresistive Sensors in Navigation Systems. Solid State Electronics Center, Honeywell Inc.
    [9] David Krakauer, John Geen. 2003. New iMEMS Angular-Rate-Sensing Gyroscope. ADI Micromachined Products Division.
    [10] 楊憲東. 2002. 自動飛行控制原理與實務. 全華科技圖書股份有限公司.

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE