簡易檢索 / 詳目顯示

研究生: 呂育書
Lyu, Yu-Shu
論文名稱: 漸近協合應力偶理論於功能性微米板之三維自由振動分析
An Asymptotic Consistent Couple Stress Theory for the Three-Dimensional Free Vibration Analysis of Functionally Graded Microplates
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 50
中文關鍵詞: 協合應力偶理論自由振動功能性材料微米板多重時間尺度方法Pasternak 模型
外文關鍵詞: consistent couple stress theory, free vibration, microscale plates, functionally graded material, multiple time scale methods, Pasternak’s foundation
相關次數: 點閱:84下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文基於協合應力偶理論(Consistent couple stress theory , CCST),結合多重時間尺度方法,發展一套三維漸近理論,對嵌入彈性介質之簡支撐功能性微米板進行三維自由振動分析。文中假設材料組成之體積分率沿板厚度方向作冪次分佈,材料特性遵守二相複合材料混合定律,以預測複合材料中有效楊氏模數及有效質量密度等數值。此外,利用Winkler或Pasternak之基礎模型模擬微米板與基礎介質間的交互作用關係。文中結合多種數學方法,如多重尺度法、無因次化、漸近展開與連續積分等,獲得多階遞歸運動方程組。在首階問題中其控制方程式之微分運算子與古典板理論(Classical plate theory, CPT)相同,然發展至高階問題將變得越加複雜,出現許多不同的非齊次項,但階數間仍共用相同微分運算子,使公式易於歸納。文章最後依不同材料參數、微米板之幾何參數及不同模態頻率等,將結果繪製成圖表後,與其他文獻作比較及討論,結果顯示微小長度因子對微米板之振動頻率影響顯著。

    Based on the consistent couple stress theory (CCST) incorporated with the multiple time scale method, the authors develop an asymptotic theory for a three-dimensional (3D) free vibration analysis of simply-supported, functionally graded microscale plates resting on an elastic medium. The material properties of the microplate are assumed to obey a power-law distribution of the volume fractions of the constituents through the thickness direction of the microplate, for which the effective material properties are estimated using the rule of mixtures. The interactions between the microplate and its foundation medium are simulated using either a Winkler or a Pasternak foundation model. Performing nondimensionalization, asymptotic expansion, and successive integration, the authors obtain recursive sets of motion equations for various order problems. The CCST-based classical plate theory (CPT) is derived as a first-order approximation of the 3D CCST. The motion equations for higher-order problems retain the same differential operators as those of the leading order problem although with different nonhomogeneous terms. Some 3D asymptotic solutions for the lowest natural frequency parameters of the microplate resting on an elastic medium at different vibration modes are carried out, for which they are shown to converge rapidly and to be in excellent agreement with the exact microplate solutions available in the literature when the material length scale parameter is taken to be zero.

    摘要 I Extended Abstract II 致謝 VI 目錄 VII 表目錄 VIII 圖目錄 IX 第一章 緒論 1 第二章 三維漸近協合應力偶理論 4 2.1 基本方程式 4 2.2 無因次化 7 2.3 漸近展開 10 2.4 漸近積分與各階問題 12 2.4.1 階問題 12 2.4.2 階問題 14 第三章 微米板之三維自由振動分析 17 3.1 階解 17 3.2 階解 18 第四章 數值範例 21 4.1 HI與FG宏觀板 21 4.2 FG微米板 22 第五章 結論 26 第六章 參考資料 27 附錄A 30 附錄B 36 表 1 不同振動模態下,三維漸近理論與其他理論對簡支撐等向性宏觀板之最低自然振動頻率解比較表。 37 表 2 不同材料特性梯度指數與長寬比下,三維漸近理論與其他理論對無基礎模型簡支撐功能性宏觀板之基礎振動頻率比較表。 38 表 3 不同材料特性梯度指數及寬厚比下,三維漸近理論與基於MCST之RSDPT對無基礎模型簡支撐功能性微米板之基礎振動頻率比較表。 39 表 4 不同長度尺度參數及寬厚比配合不同材料分布,三維漸近理論對無基礎模型簡支撐功能性微米板之基礎振動頻率解比較表。 40 表 5 不同振動模態及材料特性梯度指數配合長度尺度參數,三維漸近理論對無基礎模型簡支撐功能性微米板之基礎振動頻率解比較表。 41 圖 1 應力拆解示意圖。 42 圖 2 應力偶示意圖。 43 圖 3 嵌入彈性介質之簡支撐功能性微米板示意圖。 44 圖 4 不同寬厚比下材料尺度參數對因次化振動頻率變化關係圖。 45 圖 5 不同長寬比、長度尺度參數與功能性微米板之基本頻率參數變化圖。 46 圖 6 不同振動模態、長度尺度參數與功能性微米板之基本頻率參數變化圖。 47 圖 7 固定半波數 功能性微米板最低頻率參數隨半波數 之變化關係圖。 48 圖 8 嵌入Winkler基礎之功能性微米板的最低頻率參數隨無因次Winkler彈簧係數(KG)之變化關係圖。 49 圖 9 嵌入Pasternak基礎之功能性微米板的最低頻率參數隨無因次Pasternak彈簧係數(KW)之變化關係圖。 50

    [1] A.C.M. Chong, F. Yang, D.C.C. Lam, P. Tong, Torsion and bending of micron-scaled structures. J. Mater. Res. 14 (2001) 1052-1058.
    [2] D.C.C. Lam, A.C.M. Chong, Indentation model and strain gradient plasticity law for glassy polymers. J. Mater. Res. 14 (1999) 3784-3788.
    [3] W. Voigt Theoretische Studien fiber die Elastizitatsverhiltnisse der Kristalle (Theoretical Studies on the Elasticity Relationships of Crystals) Abh. Gesch. Wissenschaften (1887) 34.
    [4] E. Cosserat, F. Cosserat Théorie des corps déformables (Theory of Deformable Bodies) A. Hermann et Fils, Paris (1909)
    [5] R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal. 11 (1962) 415-488.
    [6] W.T. Koiter, Couple stresses in the theory of elasticity. I and II. Proc. Ned. Akad. Wet. (b) 67 (1964) 17-44.
    [7] A.C. Eringen, Theory of micropolar elasticity, Fracture, 2, ed. H. Liebowitz, Academic Press, New York, 2 (1968) 662-729.
    [8] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Sturct. 39 (2002) 2731-2743.
    [9] A.R. Hadjesfandiari, G.F. Dargush, Couple stress theory for solids. Int. J. Solids Struct. 48 (2011) 2496-2510.
    [10] A.R. Hadjesfandiari, Size-dependent thermoelasticity. Latin Amer. J. Solids Struct. 11 (2014) 1679-1708.
    [11] A.R. Hadjesfandiari, Size-dependent piezoelectricity. J. Solids Struct. 50 (2013) 2781-2791.
    [12] S.E. Alavi, M. Sadighi, M.D. Pazhooh, J.F. Ganghoffer, Development of size-dependent consistent couple stress theory of Timoshenko beams. Appl. Math. Modell. 79 (2020) 685-712.
    [13] B.N. Patel, D. Pandit, S.M. Srinivasan, A simplified moment-curvature based approach for large deflection analysis of micro-beams using the consistent couple stress theory. Eur. J. Mech. A/Solids 66 (2017) 45-54.
    [14] M. Ajri, M.M.S. Fakhrabadi, A. Rastgoo, Analytical solution for nonlinear dynamic behavior of viscoelastic nano-plates modelled by consistent couple stress theory. Latin Amer. J. Solids Struct. 15 (2018) e113.
    [15] S.F. Dehkordi, Y.T. Beni, Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory. Int. J. Mech. Sci. 128-129 (2017) 125-139.
    [16] H. Razavi, A.F. Babadi, Y.T. Beni, Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Compos. Struct. 160 (2017) 1299-1309.
    [17] A.H. Nayfeh, Introduction to Perturbation Techniques. John Wiley & Sons, Inc, New York, 1993.
    [18] S. Srinivas, C.V. Joga Rao, A.K. Rao, An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. J. Sound Vib. 12 (1970) 187-199.
    [19] D.K. Jha, T. Kant, R.K. Singh, Free vibration of functionally graded plates with a higher-order shear and normal deformation theory. Int. J. Struct. Stab. Dyn. 13 (2013) 1350004.
    [20] A. Nosier, J.N. Reddy, On vibration and buckling of symmetric laminated plates according to shear deformation theories. Part II, Acta Mech. 94 (1992) 145-169.
    [21] M. Levinson, An accurate simply-supported theory of the statics and dynamics of elastic plates. Mech. Res. Commun. 7 (1980) 343-350.
    [22] A.M. Zenkour, On vibration of functionally graded plates according to a refined trigonometric plate theory. Int. J. Struct. Stab. Dyn. 5 (2005) 279-297.
    [23] T. Kant, K. Swaminathan, Free vibration of isotropic, orthotropic and multilayer plate based on higher-order refined theories. J. Sound Vib. 241 (2001) 319-327.
    [24] R.P. Shimpi, H.G. Patel, A two variable refined plate theory for orthotropic plate analysis. Int. J. Solids Struct. 43 (2006) 6783-6799.
    [25] H.T. Thai, S.E. Kim, A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos. Part B 45 (2013) 1636-1645.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE