| 研究生: |
李皇緣 Lee, Huang-Yuan |
|---|---|
| 論文名稱: |
使用全球電離層模型提升 GPS 精密單點定位成果 Using global ionospheric maps to improve the performance of GPS precise point positioning (PPP) |
| 指導教授: |
楊名
Yang, Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 全球衛星定位系統 、精密單點定位 、全球電離層模型 、定位誤差 、收斂時間 |
| 外文關鍵詞: | GPS, PPP, GIM, positioning error, convergence time |
| 相關次數: | 點閱:208 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球衛星定位系統(Global Positioning System, GPS)可得到高精度的定位成果,因此應用廣泛。傳統的衛星定位方式分為單點定位和相對定位兩種,結合了兩項傳統定位方式的優點後,一項新的技術精密單點定位(Precise Point Positioning, PPP)便被提出。然而 GPS PPP 的一大缺點便是過長的收斂時間,同時也限制了 GPS PPP 的應用發展。將 GPS PPP 結合電離層模型,不僅可解決收斂時間過長的問題,同時也可降低定位誤差。目前歐洲定軌研究中心(Center for Orbit Determination in Europe, CODE)有提供全球電離層模型,其利用地面追蹤站的數據建置而成。本研究使用成功大學地科系太空天氣研究室提供的全球電離層模型,利用物理模式產生。探討將 GPS PPP 結合由物理模式產生的全球電離層模型後,能否得到較佳的定位成果。 本研究使用中央氣象局地球物理資料管理系統所提供的三個測站,分別進行靜態以及模擬動態的解算。實驗成果顯示,靜態解算下,結合電離層模型後,皆無法降低定位誤差。模擬動態解算下,結合 CODE 之電離層模型後,可較未結合模型之 GPS PPP 降低 10%的水平方向定位誤差,垂直方向僅有觀測時間的前 20 分鐘可降低 10%的定位誤差;結合成功大學之電離層模型後,同樣可降低 10%的水平方向定位誤差,垂直方向於觀測的前 20 分鐘可降低約 6%的定位誤差。於電離層影響較大的下午12:00~18:00 可降低更多的定位誤差。在收斂時間方面,以水平定位誤差 0.5 公尺及0.3 公尺為門檻,結合任一個模型後,皆可縮短 93.3%及 50%的收斂時間。整體實驗成果顯示,結合由物理模式產生的成功大學模型後,與結合由地面站數據建置成的CODE 模型表現是相近的。
A major disadvantage of Global Positioning System (GPS) Precise Point Positioning (PPP) is the long convergence time. Combining GPS PPP with the ionospheric maps can not only solve the problem of too long convergence time, but also reduce positioning errors. Center for Orbit Determination in Europe (CODE) provides a Global Ionospheric Maps (GIM), but its spatial resolution is difficult to present the ionospheric state in Taiwan in detail. This study uses the GIM provided by the Space Weather Lab of the Department of Earth Sciences, National Cheng Kung University (NCKU), which has higher spatial resolution. Analyze whether GPS PPP combined with this high-resolution GIM can get better positioning results. Experimental results show that under static calculation, GPS PPP combined any model, can’t reduce the positioning error. Under the simulation dynamic calculation, after combine CODE GIM, it can reduce about 10% positioning error in horizontal and vertical direction; after combine NCKU GIM, it can reduce about 10% and 6% positioning error in horizontal and vertical direction. In terms of convergence time, with the horizontal positioning error of 0.5 m and 0.3 m as the threshold, combined with either model, the convergence time can be shortened by 93.3% and 50%. The overall result shows that after combine NCKU GIM can get the similar result to the CODE GIM in horizontal direction, but after combine CODE GIM can get better performance in vertical direction.
巫明哲 (2010) 利用電離層模式改善單頻GPS精密單點定位,中央大學土木工程學 系研究所碩士論文,共74頁。
林老生、洪婉綺 (2017) 電離層高階項誤差對 GPS 精密單點定位精度之影響,台灣土地研究,20(2),第59-82頁。
涂裕民 (2013) GPS 接收儀硬體延遲偏差與低緯地區電離層模型研究,中興大學土木工程學系研究所碩士論文,共94頁。
章紅平 (2006) 基於地基GPS的中國區域電離層監測與延遲改正研究,中國科學院 上海天文台博士論文,共130頁。
彭德熙 (2008) 台灣區域性電離層模型之估計: 應用於單頻精密單點定位,成功大學測量及空間資訊學系研究所碩士論文,共68頁。
楊銘仁 (2004) 由台灣GPS追蹤站2004年資料建構區域性電離層模式及其影響定位 精度之研究,成功大學測量及空間資訊學系研究所碩士論文,共74頁。
蔡耀霆 (2020) 全球定位系統單雙頻信號用於電離層路徑總電子含量估測及應用, 臺灣大學應用力學研究所碩士論文,共65頁。
Aggrey, J., & Bisnath, S. (2019). Improving GNSS PPP convergence: The case of atmospheric-constrained, multi-GNSS PPP-AR. Sensors, 19(3), 587.
Bisnath, S., & Gao, Y. (2009). Current state of precise point positioning and future prospects and limitations. Paper presented at the Observing Our Changing Earth, Perugia.
Bartels, J., Heck, N., & Johnston, H. (1939). The three‐hour‐range index measuring geomagnetic activity. Terrestrial Magnetism and Atmospheric Electricity, 44(4), 411-454.
Brunner, F. K., & Gu, M. (1991). An improved model for the dual frequency ionospheric correction of GPS observations. Manuscripta Geodaetica, 16(3), 205-214.
Budden, K. G. (1988). The propagation of radio waves: the theory of radio waves of low power in the ionosphere and magnetosphere: Cambridge University Press, Cambridge.
Cai, C., & Gao, Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions, 17(2), 223-236.
Cai, C., Gong, Y., Gao, Y., & Kuang, C. (2017). An approach to speed up single-frequency PPP convergence with quad-constellation GNSS and GIM. Sensors, 17(6), 1302.
Chapman, S., & Ferraro, V. C. (1930). A new theory of magnetic storms. Nature, 126(3169), 129-130.
Chen, C.-H., Lin, C., Matsuo, T., Chen, W., Lee, I., Liu, J., Lin, J., Hsu, C. (2016). Ionospheric data assimilation with thermosphere‐ionosphere‐electrodynamics general circulation model and GPS‐TEC during geomagnetic storm conditions. Journal of Geophysical Research: Space Physics, 121(6), 5708-5722.
Collins, P. (2008). Isolating and estimating undifferenced GPS integer ambiguities. Paper presented at the National Technical Meeting of The Institute of Navigation, San Diego, CA.
Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., van Hove, T., Ware, R. (1996). GPS meteorology: Direct estimation of the absolute value of precipitable water. Journal of Applied Meteorology and Climatology, 35(6), 830-838.
Elsobeiey, M., & El-Rabbany, A. (2011). Convergence Time Improvement of Precise Point Positioning. Journal of Geodetic Applications in Various Situations, 5249-5264.
Elsheikh, M., Noureldin, A., & Korenberg, M. (2020). Integration of GNSS Precise Point Positioning and Reduced Inertial Sensor System for Lane-Level Car Navigation. IEEE Transactions on Intelligent Transportation Systems, 1-16.
Ghoddousi-Fard, R., & Lahaye, F. (2016). Evaluation of single frequency GPS precise point positioning assisted with external ionosphere sources. Advances in Space Research, 57(10), 2154-2166.
Gonzalez, W., Joselyn, J.-A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B., & Vasyliunas, V. (1994). What is a geomagnetic storm? Journal of Geophysical Research: Space Physics, 99(A4), 5771-5792.
Guo, J., Li, X., Li, Z., Hu, L., Yang, G., Zhao, C., Fairbaim, D., Watson, D & Ge, M. (2018). Multi-GNSS precise point positioning for precision agriculture. Precision agriculture, 19(5), 895-911.
Hargreaves, J. K. (1992). The solar-terrestrial environment: an introduction to geospace-the science of the terrestrial upper atmosphere, ionosphere, and magnetosphere: Cambridge university press.
Ho, C., Mannucci, A., Lindqwister, U., Pi, X., Tsurutani, B., Sparks, L., Lijima, B., Wilson, B., Harris, I., Reyes, M. (1998). Global ionospheric TEC variations during January 10, 1997 storm. Geophysical Research Letters, 25(14), 2589-2592.
Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (2012). Global positioning system: theory and practice: Springer Science , Berlin.
Hunsucker, R. D., & Hargreaves, J. K. (2007). The high-latitude ionosphere and its effects on radio propagation: Cambridge University Press, Cambridge.
Kelly, M. (2012). The Earth's ionosphere: Plasma physics and electrodynamics (Vol. 43): Elsevier.
Klobuchar, J. A., 1991, Ionospheric effect on GPS, GPS World, 2 (4), 48-51.
Komjathy, A. (1997). Global ionospheric total electron content mapping using the Global Positioning System. University of New Brunswick, Fredericton, N.B.
Leandro, R. F., Santos, M. C., & Langley, R. B. (2007). PPP-based ionospheric activity monitoring. Paper presented at the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation, Fort Worth, TX.
Nava, B., Coïsson, P., Amarante, G. M., Azpilicueta, F., & Radicella, S. M. (2005). A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion. Annals of Geophysics, 48(2).
Richmond, A., Ridley, E., & Roble, R. (1992). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 19(6), 601-604.
Roble, R., Ridley, E. C., Richmond, A., & Dickinson, R. (1988). A coupled thermosphere/ionosphere general circulation model. Geophysical Research Letters, 15(12), 1325-1328.
Rovira-Garcia, A., Juan, J. M., Sanz, J., & Gonzalez-Casado, G. (2015). A Worldwide Ionospheric Model for Fast Precise Point Positioning. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 4596-4604.
Schaer, S., & géodésique, S. h. d. s. n. C. (1999). Mapping and predicting the Earth's ionosphere using the Global Positioning System (Vol. 59): Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule.
Schaer, S., Gurtner, W., & Feltens, J. (1998). IONEX: The ionosphere map exchange format version 1. Paper presented at the IGS AC workshop, Darmstadt, Germany.
Schove, D. J. (1983). Sunspot cycles. Hutchinson Ross Publishing Co., Stroudsburg.
Seeber, G. (2003). Satellite geodesy: foundations, methods, and applications. Walter de gruyter, Berlin.
Seepersad, G., & Bisnath, S. (2014). Challenges in assessing PPP performance. Journal of Applied Geodesy, 8(3), 205-222.
Shi, J., Xu, C., Guo, J., & Gao, Y. (2014). Local troposphere augmentation for real-time precise point positioning. Earth, Planets and Space, 66(1), 1-13.
Su Chunxun, Guo Hailin, Yi Wenting (2018) Assessment of Convergence Time for Precise Point Positioning. Journal of Geomatics , 43(4): 24-27, 33.
Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., & Beer, J. (2004). Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature, 431(7012), 1084-1087.
Welch, G., & Bishop, G. (1995). An introduction to the Kalman filter. University of North Carolina. Chapel Hill.
Wen, D., Yuan, Y., & Ou, J. (2007). Monitoring the three-dimensional ionospheric electron density distribution using GPS observations over China. Journal of Earth System Science, 116(3), 235-244.
Xiang, Y., Gao, Y., & Li, Y. (2020). Reducing convergence time of precise point positioning with ionospheric constraints and receiver differential code bias modeling. Journal of Geodesy, 94(1), 1-13.
Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q., & Yanagidani, T. (2013). High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. Journal of Geodesy, 87(4), 361-372.
Xue, J., Song, S., & Zhu, W. (2013). Assessment of CODE GIM Over China. Paper presented at the ION 2013 Pacific PNT Meeting, Honolulu, Hawaii.
Xue, X., Lan, Y., Sun, Z., Chang, C., & Hoffmann, W. C. (2016). Develop an unmanned aerial vehicle based automatic aerial spraying system. Computers and Electronics in Agriculture, 128, 58-66.
Yue, X., Schreiner, W. S., Kuo, Y. H., Hunt, D. C., Wang, W., Solomon, S. C., Burns, A. G.,Bilitza, D., Liu, J-Y., Wan, W. (2012). Global 3‐D ionospheric electron density reanalysis based on multisource data assimilation. Geophysical Research:Space Physics, 117(A9), A09325, 1-17.
Zhang, D., Zhang, W., Li, Q., Shi, L., Hao, Y., & Xiao, Z. (2010). Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes. Annales Geophysicae, 28(8), 1571-1580.
Zhang, H., Gao, Z., Ge, M., Niu, X., Huang, L., Tu, R., & Li, X. (2013). On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations. Sensors, 13(11), 15708-15725.
Zhou, F., Dong, D., Li, W., Jiang, X., Wickert, J., & Schuh, H. (2018). GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions, 22(2), 1-10.