簡易檢索 / 詳目顯示

研究生: 林岳璋
Lin, Yue-Chang
論文名稱: 具有混合掘入式閘極結構之氮化鎵/氮化鋁鎵增強型高電子移動率電晶體之研製
Fabrication of Enhancement-Mode GaN/AlGaN High Electron Mobility Transistors (HEMTs) with Hybrid Recessed-Gate Structures
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 132
中文關鍵詞: 異質結構場效應電晶體氮化鋁鎵/氮化鎵金氧半場效應電晶體混合式蝕刻敏化活化無電鍍表面處理
外文關鍵詞: high electron mobility transistor (HEMT), AlGaN/GaN, hybrid gate recess, sensitization, activation, electroless plating (EP), surface treatment
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們提出混合式閘極掘入研製氮化鋁鎵/氮化鎵材料為基礎之增強型高電子移動率電晶體。由於氮化鋁鎵/氮化鎵結構具有濃厚的二維電子氣使元件保持在常開的狀況,我們利用閘極掘入方式減少閘極金屬與二維電子氣之距離,使臨界電壓達到正偏移,並將二氧化鉿作為介電層進而提高元件之特性。此外,利用無電鍍沉積法、預植晶種技術以及過氧化氫表面處理技術,完整探討其對元件之影響,包含直流及熱穩定度。實驗結果顯示,所研製的元件展現出良好的特性以及高溫操作能力。
    首先,以混合式閘極掘入研製出具增強型操作之氮化鎵/氮化鋁鎵異質結構場效應電晶體。混合式閘極掘入技術包含乾式蝕刻及濕式蝕刻,此技術縮短閘極金屬與通道之間的有效距離使得臨界電壓產生正偏移。接著,利用蒸鍍的方式鍍上不同種類之閘極金屬研製氮化鎵/氮化鋁鎵異質結構場效應電晶體並作比較。此外,我們利用射頻磁控濺鍍沉積二氧化鉿,在鈀/氮化鎵間形成良好的介電層。由於二氧化鉿高介電係數之特性,所形成的介電層可以降低表面能態及抑制電流崩塌。從實驗結果可發現,處理後之電晶體可調變成具增強型操作之增強型操作元件。最後,將所研製電晶體針對不同溫度做相關特性的分析。
    其次,以低溫無電鍍鈀沉積法結合混合式閘極掘入研製出具增強型操作之氮化鎵/氮化鋁鎵異質結構場效應電晶體。藉由無電鍍低溫與低能量的沉積特性,能減少蕭特基接面之熱破壞及表面態位密度。從實驗的結果得知,相較於蒸鍍閘極元件,無電鍍閘極元件顯示具有較佳的蕭特基接面特性與優異的直流特性。另外,我們探討不同溫度無電鍍閘極元件的各種相關特性表現。
    最後,利用過氧化氫表面處理增強型氮化鎵/氮化鋁鎵異質結構場效應電晶體。藉由將元件浸泡至過氧化氫溶液,在表面產生一薄膜氧化鋁層,然後,以射頻磁控濺鍍的方式沉積二氧化鉿,形成二氧化鉿/氧化鋁之堆疊式的介電層之結構,此結構不但能降低表面耐態也能使閘極漏電流大幅下降。

    In this dissertation, we report hybrid gate recess technique to fabricate Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors (HEMTs). Owing to the dence Two Dimensional Electron Gas (2DEG) of AlGaN/GaN structures, the device was normally-on at zero gate-source voltage. We used gate recess technique to reduce the distance between the gate and 2DEG layer, which can effectively shift the threshold voltage to positive. The Hf¬O2 are served as a gate dielectric layer, which can improve the performance of devices. By electroless plating (EP) deposition approach, pre-seeding metal seeds approach and hydrogen peroxide surface treatment, the device characteristic of the DC performance and temperature stability are investigated. Experimentally, the studied devices show good device characteristics and high temperature operation capability.

    First, an E-mode AlGaN/GaN heterostructure field-effect transistor (HFET), using hybrid gate recess technology, is fabricated and investigated. Hybrid gate recess technique incorporating dry etching technique and wet etching technique can effectively reduce the distance between metal gate and 2DEG layer. A distance reduction between the gate and channel layer resulted in a positive shift in threshold voltage (Vth). Then, different metal was fabricated as gate of AlGaN/GaN HEMTs to make comprehension. In addition, a HfO2 dielectric was prepared by R.F sputtering is implemented. Due to the high dielectric constant of HfO2,the formed dielectric could decrease the surface state and suppress the current collapse. Experimentally, the treated HEMT is converted to an enhancement mode (E-mode) operation. Therefore, the improvement of device performance of DC and thermal stability could be expected.
    Second, the enhancement mode AlGaN/GaN high electron mobility transistors (HEMTs), with hybrid gate recess, sensitization, activation, and electroless plating (EP) of palladium (Pd) deposition, are fabricated and studied. The employed sensitization and activation processes could reduce the deposition time of EP and form the uniform metal film. Hence, the improvement of device performance in terms of DC performance and thermal stability. Moreover, the lower temperature variation rate and thermal stability of device over range (300~500K) are obtained.
    Finally, the enhancement mode AlGaN/GaN high electron mobility transistors (HEMTs), with hydrogen peroxide surface treatment, are fabricated and studied. The device was immersed in H2O2 to form a thin AlxOy. Then, the HfO2 was sputtered as a dielectric. Therefore, a stack dielectric structure of AlxOy/HfO2 is achieved in this work. The stack dielectric layer could reduce the gate leakage and decrease the surface state, which can improve the performance of device.

    Contents Table Lists Figure Captions Chapter 1. Introduction 1-1. Thesis Organizations 1 Chapter 2. Comprehensive of enhancement mode AlGaN/GaN-Based Metal-semiconductor (MS) and Metal-oxide-semiconductor (MOS) Hetrostructure Elecron Mobility transistor (HEMTs) using hybrid gate recess approach 2-1. Introduction 5 2-2. Device Structure and Fabrication 7 2-3. Experimental Results and Discussion 9 2-3-1. Material properties Analysis 9 2-3-2. Device characteristics 10 2-3-3. Temperature dependent characteristics of DC performance 15 2-4. Summary 18 Chapter 3. Investigation of Enhancement-mode AlGaN/GaN-Based Heterostructure Electron Mobility Transistors (HEMTs) prepared by Electroless plating (EP) 3-1. Introduction 20 3-2. Device Structure and Fabrication 21 3-3. Experimental Results and Discussion 22 3-3-1 Sensitization, Activation, EP of palladium (Pd) 23 3-3-2 Material properties Analysis 24 3-3-3 Device characteristics 24 3-3-4 Temperature dependent characteristics of DC performance 27 3-4. Summary 28 Chapter 4. Investigation of Enhancement-mode AlGaN/GaN-Based High Electron Mobility Transistors (HEMTs) with a Hydrogen Peroxide (H2O2) Surface Treatment 4-1. Introduction 30 4-2. Device Structure and Fabrication 31 4-3. Experimental Results and Discussion 32 4-3-1. Material properties Analysis 32 4-3-2. Device characteristics 32 4-3-3. Temperature dependent characteristics of DC performance 34 4-4. Summary 36 Chapter 5. Conclusion and Prospect 5-1. Conclusion 37 5-2. Prospect 38 References 39 Tables Figures

    [1] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET,” IEEE Trans. Electron Devices, vol. 48, pp. 2677-2683, 2001.
    [2] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, vol. 50, pp. 1717-1723, 2003.
    [3] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, J. K. Sheu, and C. S. Ho, “Enhanced AlGaN/GaN MOS-HEMT performance by using hydrogen peroxide oxidation technique,” IEEE Trans. Electron Devices, vol. 60, pp. 213-220, 2013.
    [4] H. R. Chen, M. K. Hsu, S. Y. Chiu, W. T. Chen, G. H. Chen, Y. C. Chang, and W. S. Lour, “InGaP/InGaAs pseudomorphic heterodoped-channel FETs with a field plate and a reduced gate length by splitting gate metal,” IEEE Electron Device Lett., vol. 27, pp. 948-950, 2006.
    [5] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in delta-doped In0.425Al0.575As/In0.65Ga0.35As metamorphic HEMT,” IEEE Electron Device Lett., vol. 26, pp. 59-61, 2005.
    [6] Y. S. Lin and Y. L. Hsieh, “Effect of temperature on novel InAlGaP/GaAs/InGaAs camel-gate pseudomorphic high-electron-mobility transistors,” J. Electrochem. Soc., vol. 153, pp. G498-G501, 2006.
    [7] M. Faqir, G. Verzellesi, A. Chini, F. Fantini, F. Danesin, G. Meneghesso, E. Zanoni, and C. Dua, “Mechanisms of RF current collapse in AlGaN-GaN high-electron mobility transistors,” IEEE Trans. Device Mater. Rel., vol. 8, pp. 240-247, 2008.
    [8] K. H. Su, W. C. Hsu, C. S. Lee, T. Y. Wu, Y. H. Wu, L. Chang, R. S. Hsiao, J. F. Chen, and T. W. Chi, “A novel dilute antimony channel In0.2Ga0.8AsSb/GaAs HEMT,” IEEE Electron Device Lett., vol. 28, pp. 96-99, 2007.
    [9] S. W. Tan, H. R. Chen, W. T. Chen, M. K. Hsu, A. H. Lin, and W. S. Lour, “Characterization and modeling of three-terminal heterojunction phototransistors using an InGaP layer for passivation,” IEEE Trans. Electron Devices, vol. 52, pp. 204-210, 2005.
    [10] Necmi Biyikli, Orhan Aytur, Ibrahim Kimukin, Turgut Tut, and Ekmel Ozbay, “Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity,” Appl. Phys. Lett., vol. 81, pp. 3272, 2002.
    [11] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 21, pp. 268-270, 2000.
    [12] M. K. Tsai, S. W. Tan, Y. W. Wu, Y. J. Yang, and W. S. Lour, “Improvements in direct-current characteristics of Al0.45Ga0.55As-GaAs digital-graded superlattice-emitter HBTs with reduced turn-on voltage by wet oxidation,” IEEE Trans. Electron Devices, vol. 50, pp. 303-309, 2003.
    [13] L. H. Huang, S. H. Yeh, C. T. Lee, H. Tang, J. Bardwell, and J. B. Webb, “AlGaN/GaN metal–oxide–semiconductor high-electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method,” IEEE Electron Device Lett., vol. 29, pp. 284-286, 2008.
    [14] C. Liu, E. F. Chor, and L. S. Tan, “Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors,” Appl. Phys. Lett., vol. 88, pp. 173504-1-173504-3, 2006.
    [15] M. Higashiwaki, N. Hirose, and T. Matsui, “Cat-CVD SiN-passivated AlGaN-GaN HFETs with thin and high Al composition barrier Layers,” IEEE Electron Device Lett., vol. 26, pp. 139-141, 2005.
    [16] M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “350 V/150 A AlGaN/GaN power HFET on silicon substrate with source–via grounding (SVG) structure,” IEDM Tech. Dig., pp. 803–806, 2004.
    [17] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, and H. Ohashi, “High breakdown voltage AlGaN/GaN power-HEMT design and high current density switching behavior,” IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2528–2531, 2003.
    [18] M. K. Tsai, S. W. Tan, Y. W. Wu, W. S. Lour, and Y. J. Yang, “Depletion-mode and enhancement-mode InGaP/GaAs δ-HEMTs for low supply-voltage applications,” Semicond. Sci. Technol., vol. 17, pp. 156-160, 2002.
    [19] S. W. Tan and C. W. Liau, “Self-Aligned Enhancement-Mode and Parasite Depletion-Mode Heterojunction Doped-Channel FET for Low Power Supply DCFL Application,” J. Electrochem. Soc., vol. 154, pp. H948-H950, 2007.
    [20] H. C. Chiu, C. S. Cheng, and Y. J. Shih, “High uniformity (Al0.3Ga0.7)0.5In0.5P/InGaAs enhancement-mode pseudomorphic HEMTs by selective succinic acid gate recess,” Electrochem. Solid State Lett., vol. 9, pp. G59-G61, 2006.
    [21] J. C. Huang, W. C. Hsu, C. S. Lee, D. H. Huang, M. F. Huang, “Temperature-dependent characteristics of enhancement-/depletion-mode double δ-doped AlGaAs/InGaAs pHEMTs and their monolithic DCFL integrations,” Solid-State Electron., vol. 51, pp. 882-887, 2007.
    [22] Y. Uemoto et al , “Gate Injection Transistor (GIT) - A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3393–3399, 2007.
    [23] J. S. Moon, D. Wong, T. Hussain, M. Micovic, P. Deelman, M. Hu, M. Antcliffe, C. Ngo, P. Hashimoto, and L. McCray, “Submicron enhancement-mode AlGaN/GaN HEMTs,” in Proc. Device Research Conf., pp. 23–24, 2002.
    [24] E. P. Gusev, V. Narayanan, and M. M. Frank, “Advanced high-k dielectric stacks with poly Si and metal gates: Recent progress and current challenges,” IBM J. Res. Develop., vol. 50, no. 4/5, pp. 387–410, 2006.
    [25] C. Liu, E. F. Chor, and L. S. Tan, “Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors,” Appl. Phys. Lett., vol. 88, no. 9, p. 173 504, Apr. 2006.
    [26] Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee, and M. Hongb, “Structural and electrical characteristics of atomic layer deposited high k HfO2 on GaN,” Appl. Phys. Lett., vol. 90, no. 9, p. 232 904, 2007.
    [27] H. C. Chiu, C. W. Yang, Y. H. Lin, R. M. Lin, L. B. Chang and K. Y. Horng, “Device Characteristics of AlGaN/GaN MOS-HEMTs Using High-k Praseodymium Oxide Layer,” IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 3305–3309, 2008.
    [28] Hyeongnam Kim, Jaesun Lee, Dongmin Liu, and Wu Lu, “Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility by post-gate annealing,” Appl. Phys. Lett. vol. 86, pp. 143505, 2005
    [29] Dongmin Liu, Jaesun Lee, and Wu Lu, “The impact of post gate annealing on microwave noise performance of AlGaN/GaN HEMTs,” Solid-State Electron., vol. 51, pp. 90-93, 2007.
    [30] H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces,” J. Vac. Sci. Technol. B, vol. 4, pp. 1130~1138 (1986).
    [31] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, Chem., vol. 85, no. 1/2, pp. 10–18, Jun. 2002.
    [32] C. C. Huang, H. I. Chen, T. Y. Chen, C. S. Hsu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, “On an Electroless Plating (EP)-Based Pd/AlGaN/GaN Heterostructure Field-Effect Transistor (HFET)-Type Hydrogen Gas Sensor,” IEEE Electron Device Lett., vol. 33, no. 6, pp. 788-790, 2012.
    [33] C. C. Huang, H. I. Chen, T. Y. Chen, C. S. Hsu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, “Characteristics of a Pd/AlGaN/GaN Transistor processed using the sensitization, activation, and electroless plating (EP) approaches,” J. Electrochem. Soc., vol. 159, pp. D637-D641, 2012.
    [34] H.-Y. Liu, B.-Y. Chou, W.-C. Hsu, C.-S. Lee, and C.-S. Ho, "Novel oxide-passivated AlGaN/GaN HEMT by using hydrogen peroxide treatment," IEEE Transactions on Electron Devices, vol. 58, pp. 4430-4433, 2011.
    [35] H.-Y. Liu, B.-Y. Chou, W.-C. Hsu, C.-S. Lee, and C.-S. Ho, "A simple gate-dielectric fabrication process for AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors," IEEE Electron Device Letters, vol. 33, pp. 997-999, 2012.
    [36] H.-Y. Liu, B.-Y. Chou, W.-C. Hsu, C.-S. Lee, J.-K. Sheu, and C.-S. Ho, "Enhanced AlGaN/GaN MOS-HEMT performance by using hydrogen peroxide oxidation technique," IEEE Transactions on Electron Devices, vol. 60, pp. 213-220, 2013.
    [37] H.-Y. Liu, B.-Y. Chou, W.-C. Hsu, C.-S. Lee, and C.-S. Ho, "Temperature-dependent investigation of AlGaN/GaN oxide-passivated HEMT by using hydrogen peroxide oxidation method," ECS Journal of Solid State Science and Technology, vol. 1, pp. Q86-Q90, 2012.
    [38] T. Mimura, “The Early History of High Electron Mobility Transistor (HEMT),” IEEE Trans. Microw. Theory Tech. ,vol 50, pp.780, 2002
    [39] Y. S. Lin, W. C. Hsu, C. H. Wu. W. Lin, and R. T. Hsu, “High breakdown voltage symmetric double -doped In0.49Ga0.51P/In0.25Ga0.75As/GaAs high electron mobility transistor,” Appl. Phys. Lett., vol. 75, pp. 1616-1618, 1999.
    [40] U. K. Mishra, P. Parikh, and Y.-F. Wu, “AlGaN/GaN HEMTs—An overview of device operation and application,” Proc. IEEE, vol. 90, no. 11, pp. 1022–1031, Nov. 2002.
    [41] N.-Q. Zhang, B. Moran, S. P. DenBaars, U. K. Mishra, X. W. Wang, and T. P. Ma, “Effects of surface traps on breakdown voltage and switching speed of GaN power switching HEMTs,” IEDM Tech. Dig., pp. 589–592, 2001.
    [42] B.J. Baliga, “Gallium nitride devices for power electronic applications,” Semicond. Sci. Technol., vol. 28, pp. 074011, 2013.
    [43] T. Palacios, “High-power AlGaN/GaN HEMTs for Ka-band applications,” IEEE Transactions on Electron Devices, vol.26, pp.781-783, 2005
    [44] K. Ota, K. Endo, Y. Okamoto, Y. Ando, H. Miyamoto, and H. Shimawaki, “A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique,” in IEDM Tech. Dig., Dec. 2009, pp. 153–156.
    [45] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductorsfor superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481–1483, Aug. 1994.
    [46] M. Trivedi and K. Shenai, “Performance evaluation of high-power
    wide band-gap semiconductor rectifiers,” J. Appl. Phys., vol. 85, no. 9,pp. 6889–6897, 1999.
    [47] Heinz Schulz and K. H. Thiemann, “Crystal structure refinement of AlN and GaN,” Solid-Stat communication., vol. 23, pp. 815-819, Aug. 1977.
    [48] Qi Zhou, “7.6 V Threshold Voltage High-Performance Normally-off Al2O3/GaN MOSFET Achieved by Interface Charge Engineering,” IEEE Electron Device Lett., vol. 37, pp. 165-168, 2016.
    [49] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, “High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment,” IEEE Electron Device Lett., vol. 26, no. 7, pp. 435–437, 2005.
    [50] C. S. Suh, Y. Dora, N. Fichtenbaum, L. McCarthy, S. Keller, and U. K. Mishra, “High-breakdown enhancement-mode AlGaN/GaN HEMTs with integrated slant field-plate,” IEDM Tech. Dig., pp. 911–913, 2006.
    [51] B. Lu, O. I. Saadat, E. L. Piner, and T. Palacios, “Enhancement-mode AlGaN/GaN HEMTs with high linearity fabricated by hydrogen plasma treatment,” Proc. 67th Device Res. Conf. Dig., pp. 59–60, 2009.
    [52] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “A normally-off AlGaN/GaN transistor with RonA = 2.6 m_cm2 and BVds = 640 V using conductivity modulation,” in Proc. IEDM, pp. 1–4, 2006.
    [53] I. Hwang, H. Choi, J. Lee, H. S. Choi, J. Kim, J. Ha, C.-Y. Um, S.-K. Hwang, J. Oh, J.-Y. Kim, J. K. Shin, Y. Park, U.-I. Chung, I.-K. Yoo, and K. Kim, “1.6 kV, 2.9 m_ cm2 normally-off p-GaN HEMT device,” in Int. Symp. Power Semiconductor Device ICs Dig. (ISPSD), pp. 41–44, 2012.
    [54] L.-Y. Su, F. Lee, and J. J. Huang, “Enhancement-mode GaN-based highelectron mobility transistors on the Si substrate with a P-type GaN cap layer,” IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 460–465, 2014.
    [55] Zhe Xu, “Fabrication of Normally Off AlGaN/GaN MOSFET Using a Self-Terminating Gate Recess Etching Technique” IEEE Electron Device Lett., vol. 34, no. 7, pp. 855–857, 2013.
    [56] Zhe Xu, Jinyan Wang, and Jingqian Liu, “Demonstration of Normally-off Recess-Gated AlGaN/GaN MOSFET Using GaN Cap Layer as Recess Mask,” IEEE Trans. Electron Devices, vol. 35, no. 12, pp. 1197-1199, 2014.
    [57] W. B. Lanford, T. Tanaka, Y. Otoki, and I. Adesid, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” Electron. Lett., vol. 41, no. 7, pp. 449–450, Mar. 2005.
    [58] W. Saito, “Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications,” IEEE Tran on Electron Devices, vol.53, no.2, pp.356-362, (2006).
    [59] T. Oka and T. Nozawa, “AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 668–670, 2008.
    [60] K.-S. Im, “Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 192–194, 2010.
    [61] H. C. Duran, L. Ren, M. Beck, M. A. Py, M. Ilegems, and W. Bachtold, “Low-frequency noise properties of selectively dry etched ¨ InP HEMT’s,” IEEE Trans. Electron Devices, vol. 45, pp. 1219–1225, June 1998.
    [62] W. Ahn, “Normally-off AlGaN/GaN MOS-HEMTs by KOH wet etch and RF-sputtered HfO2 gate insulator,” Proceedings of 25th Int. Symp. on Power Semiconductor Devices & IC’s (ISPSD), pp.311-314, 2013.
    [63] A. Mahajan, M. Arafa, P. Fay, C. Caneau, and I. Adesida, “Enhancement-mode high electon mobility transistor (E-HEMT’s) lattice-matched to InP,” IEEE Trans. Electron Devices, vol. 45, pp. 2422-2429, 1998.
    [64] E. P. Gusev, V. Narayanan, and M. M. Frank, “Advanced high-k dielectric stacks with poly Si and metal gates: Recent progress and current challenges,” IBM J. Res. Develop., vol. 50, no. 4/5, pp. 387–410, 2006.
    [65] C. Liu, E. F. Chor, and L. S. Tan, “Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors,” Appl. Phys. Lett., vol. 88, no. 9, p. 173 504, 2006.
    [66] Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee, and M. Hongb, “Structural and electrical characteristics of atomic layer deposited high k HfO2 on GaN,” Appl. Phys. Lett., vol. 90, no. 9, p. 232 904, Jun. 2007.
    [67] Yuanzheng Yue, and Yue Hao, “AlGaN/GaN MOS-HEMT With HfO2 Dielectric and Al2O3 Interfacial Passivation Layer Grown by Atomic Layer Deposition,” IEEE Electron Device Lett, vol. 29, pp. 838-840, 2008.
    [68] C.C.Yeo, M.S.Joo, B.J.Cho, S.J.Whang, “Effect of annealing on the composition and structure of HfO2 and nitrogen-incorporated HfO2,” Thin Solid Films, 462(2004), 90-95
    [69] H. C. Chiu, C. W. Yang, C. H. Chen, C. K. Lin, J. S, Fu, H. Y. Tu, S. F. Tang, “High thermal stability AlGaAs/InGaAs enhancement-mode pHEMT using palladium-gate technology,” Microelectron. Reliab., vol. 50, pp. 847-850, 2010.
    [70] Q. Z. Liu and S. S. Lau, “A review of the metal-GaN contact technology,” Solid-State Electron., vol. 41, pp. 677-691, 1998.
    [71] J. Shi, L. F. Eastman, X. Xin, and M. Pophristic, “High performance AlGaN/GaN power switch with HfO2 insulation,” Appl. Phys. Lett., vol. 95, pp. 042103-1–042103-3, 2009.
    [72] L.H. Huang, S.H. Yeh, C.T. Lee, “High frequency and low frequency noise of AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors with gate insulator grown using photoelectrochemical oxidation method,” Appl. Phys. Lett., vol. 93, pp. 043511-1–043511-3, 2008.
    [73] S. Pearton, F. Ren, A. Zhang, P. Lee, “Fabrication and performance of GaN electronic devices,” Mater. Sci. Eng. R-Rep., vol. 30, pp. 55–212, 2000.
    [74] H. Hasegawa, T. Sato, and T. Hashizume, “Evolution mechanism of nearly pinning-free platinum/n-type indium phosphide interface with a high Schottky barrier height by in situ electrochemical process,” J. Vac. Sci. Technol. A, vol. 15, pp. 1227-1235, 1997.
    [75] P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, “Schottky-barrier on n-type GaN grown by hydride vapor-phase epitaxy,” Appl. Phys. Lett., vol. 63, pp. 2676-2678, 1993.
    [76] J. D. Guo, M. S. Feng, R. J. Guo, F. M. Pan, and C. Y. Chang, “Study of Schottky barriers on n-type GaN grown by low-pressure metal organic chemical-vapor-deposition,” Appl. Phys. Lett., vol. 67, pp. 2657-2659, 1995.
    [77] A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesida, “Schottky barrier properties of various metals on n-type GaN,” Semicond. Sci. Technol., vol. 11, pp. 1464-1467, 1996.
    [78] T. Sato, S. Uno, T. Hashizume, and H. Hasegawa, “Large Schottky barrier heights on indium phosphide-based materials realized by in-situ electrochemical process,” Jpn. J. Appl. Phys., vol. 36, pp. 1811-1817, 1997.
    [79] P. C. Chou, H. I. Chen, et al. “Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor,” Sens Actuator B., vol. 203, pp. 258~262, 2014.
    [80] C. C. Chen, H. I. Chen, I. P. Liu, P. C. Chou, J. K. Liou, J. H. Tsai, W. C. Liu, “An enhancement-mode pseudomorphic high electron mobility transistor prepared by an Electroless Plating (EP) and a gate-sinking approach,” Solid-State Electron., vol. 105, pp. 45-50, 2015.
    [81] L. Y. Chen, H. I. Chen, C. C. Huang, Y. Wen Huang, Tsung-Han Tsai, Yi-Chun Liu, Tai-You Chen, Shiou-Ying Cheng, and Wen-Chau Liu, “Characteristics of an electroless plated-gate transistor,” Appl. Phys. Lett., vol. 95, pp. 052105, 2009.
    [82] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, Chem., vol. 85, no. 1/2, pp. 10–18, Jun. 2002.
    [83] C. C. Huang, H. I. Chen, T. Y. Chen, C. S. Hsu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, “Characteristics of a Pd/AlGaN/GaN Transistor processed using the sensitization, activation, and electroless plating (EP) approaches,” J. Electrochem. Soc., vol. 159, pp. D637-D641, 2012.
    [84] I. Ohno, “Electrochemistry of electroless plating,” Mater. Sci. Eng. A., vol. 146, no. 1/2, pp. 33–49, Oct. 1991.
    [85] C. C. Huang, H. I. Chen, S. Y. Cheng, L. Y. Chen, T. H. Tsai, Y. C. Liu, T. Y. Chen, C. H. Hsu, and W. C. Liu, “On the characteristics of an electroless plated (EP)-based pseudomorphic high electron mobility transistor (PHEMT),” Solid State Electron., vol. 61, no. 1, pp. 13–17, Jul. 2011.
    [86] M. Golio, “RF and Microwave Semiconductor Device Handbook. Boca Raton,” FL: CRC Press, 2003.
    [87] F. Ren and J. C. Zolper, “Wide Energy Bandgap Electronic Devices. River Edge,” NJ: World Scientific, 2003
    [88] J. Kwo, M. Hong, B. Busch, “Advances in high k gate dielectrics for Si and III-V semiconductors,” J.Crys.Growth., vol. 252, pp. 645-650, 2003.
    [89] G. D. Wilk, R. M. Wallace, J. M. Anthony, “High-k Gate Dielectrics: Current Status and Materials Properties Considerations,” J. Appl. Phys., vol. 89, pp.5243-5275, 2001.
    [90] P. Kordoš, G. Heidelberger, J. Bernát, A. Fox, M. Marso, and H. Lüth, “High-power SiO2/AlGaN/GaN metal–oxide–semiconductor hetero-structure field-effect transistors,” Appl. Phys. Lett., vol. 87, no. 14, pp. 143501-1–143501-3, 2005.
    [91] S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, and H. Ohashi, “High breakdown voltage AlGaN/ GaN MIS-HEMT with SiN and TiO2 gate insulator,” Solid State Electron., vol. 50, no. 6, pp. 1057–1061, 2006.
    [92] Y. Dora, S. Han, D. Klenov, P. J. Hansen, K. S. No, U. K. Mishra, S. Stemmer, and J. S. Speck, “ ZrO2 gate dielectrics produced by ultraviolet ozone oxidation for GaN and AlGaN/GaN transistors,” J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct., vol. 24, no. 2, pp. 575–581, 2006.
    [93] K. Balachander, S. Arulkumaran, Y. Sano, T. Egawa, and K. Baskar, “Fabrication of AlGaN/GaN double-insulator metal–oxide–semiconductor high-electron-mobility transistors using SiO2 and SiN as gate insulators,” Phys. Stat. Sol. (A), Appl. Mat., vol. 202, no. 4, pp. R32–R34, 2005.
    [94] Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu, “AlGaN/ GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition,” IEEE Electron Device Lett., vol. 29, no. 8, pp. 838–840, 2008.
    [95] Petitdidier S, Bertagna V, Rochat N, Rouchon D, Besson P, Erre R, “Growth mechanism and characterization of chemical oxide films produced in peroxide mixtures on Si(100) surfaces.” Thin Solid Films, vol.476, pp.51–58, 2005.
    [96] T. P. Chen, S. I. Fu, S. Y. Cheng, J. H. Tsai, D. F. Guo, W. S. Lour, and W. C. Liu, “Surface treatment effect on temperature-dependent properties of InGaP/GaAs heterobipolar transistors,” J. Appl. Phys., vol. 101, pp. 034501-1-034501-5, 2007.
    [97] W. J. Ahn, O.Y. Seok, M.W. Ha, Y.S. Kim, and M.K. Han, "Normally off AlGaN/GaN MOS-HEMTs by KOH Wet Etch and RF-Sputtered HfO2 Gate Insulator," Proc. Int. Symp. Power Semicond. Dev. and ICs., May. 26-30, pp. 311-314, 2013.
    [98] J.-H. Lin, “Normally-off AlGaN/GaN high-electron-mobility transistor on Si (111) by recessed gate and fluorine plasma treatment,” J. Appl. Phys., vol. 55, 01AD05-1 ~ 01AD05-4, 2015.
    [99] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “A normally-off AlGaN/GaN transistor with RonA = 2.6 mcm2 and BVds = 640 V using conductivity modulation,” in Proc. Int. Electron Device Meeting (IEDM), Dec. 2006.
    [100] L.-Y. Su, F. Lee, and J. J. Huang, “Enhancement-mode GaN-based highelectron mobility transistors on the Si substrate with a P-type GaN cap layer,” IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 460–465, 2014.
    [101] Y.-H. Wang, Y. C. Liang, G. S. Samudra, H. Huang, B.-J. Huang, S.-H. Huang, T.-F. Chang, C.-F. Huang, W.-H. Kuo, and G.-Q. Lo, “6.5 V high threshold voltage AlGaN/GaN power metal-insulatorsemiconductor high electron mobility transistor using multilayer fluorinated gate stack,” IEEE Electron Device Lett., vol. 36, no. 4, pp. 381–383, 2015.
    [102] T.-H. Hung, P. S. Park, S. Krishnamoorthy, D. N. Nath, and S. Rajan, “Interface charge engineering for enhancement-mode GaN MISHEMTs,” IEEE Electron Device Lett., vol. 35, no. 3, pp. 312–314, 2014.

    無法下載圖示 校內:2022-07-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE