簡易檢索 / 詳目顯示

研究生: 林奇鋒
Lin, Chi-Feng
論文名稱: 304L不銹鋼在未預變形及預變形條件下之高速撞擊特性與微觀組織的比較研究
Comparative Study of Dynamic Impact Response and Microstructure of 304L Stainless Steel With and Without Prestrain
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 180
中文關鍵詞: 應變速率效應霍普金森桿304L不銹鋼
外文關鍵詞: Hopkinson bar, 304L stainless steel, Strain rate effect
相關次數: 點閱:133下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用霍普金森試驗機比較未預變形及預變形304L不銹鋼在動態荷載下之塑性變形行為與微觀組織之變化。304L不銹鋼原材經過1050℃,30分鐘退火處理後水冷,以移除前製程之殘留應力、機械雙晶、麻田散鐵與大部分之差排作為未預變形條件之材料;另將退火棒材切割成20 mm之厚度,再以100噸成形試驗機分別預變形至0.15,0.3與0.5,作為預變形測試材料。兩種材料經加工成為直徑9.7 mm長9.7 mm之圓柱形試件後,在溫度25℃、應變速率8×102-4.8×103 s-1及變形量由降服開始至0.3範圍下進行動態變形測試。
    研究結果顯示未預變形與預變形304L不銹鋼之動態機械性質受應變、應變速率影響甚劇,兩者之塑流應力隨著應變速率上升而明顯增加,且預變形材料具有較高的撞擊荷載強度。應變與應變速率效應也同時影響到加工硬化速率、應變速率敏感性及熱活化體積的變化。高應變速率範圍下,加工硬化速率隨著應變與應變速率增加而下降,而相同動態荷載條件下,預變形0.15材料具有最高之加工硬化速率。應變速率敏感性隨著加工硬化應力與預變形量增加而增加,然而熱活化體積有相反的趨勢。藉由具微觀組織基礎之構成方程式配合實驗所得之材料參數,可以精確描述未預變形與預變形304L不銹鋼在動態荷載下之塑性變形行為。破壞形貌觀察顯示絕熱剪切是主要之破壞主宰機構,最大剪應力面形成具有空孔與裂縫之絕熱剪切帶並導致造成材料的破壞。
    微觀組織分析結果顯示預變形量、應變與應變速率對差排、機械雙晶與 麻田散鐵之形貌及特徵有顯著的影響。未預變形材料之差排結構主要為等軸差排胞;預變形材料中,大部分為長條狀差排胞。機械雙晶只在預變形材料中被發現。差排密度與雙晶密度 麻田散鐵轉換量隨著預變形量、應變與應變速率的增加而增加;然而,在預變形0.5條件,雙晶的形成受到抑制。定量分析指出差排密度、雙晶密度與麻田散鐵轉換量與加工硬化應力( )之變化有關,並反映出不同之加工強化效應。

    This study compares the dynamic plastic deformation behaviour and microstructural evolution of 304L stainless steel with and without metal forming prestrain using the compressive split Hopkinson pressure bar technique under strain rates ranging from 8×102 to 4.8×103 s-1 at room temperature, with true strains varying from yield to 0.3. Results show that the flow stress of unprestrained and prestrained 304L stainless steel is sensitive to applied strain rate, but the prestrained material exhibits greater strength. Work hardening rate, strain rate sensitivity and activation volume depend strongly on prestrain, strain and strain rate. Under dynamic range, work hardening rate decreases with increasing strain and strain rate, the 0.15 prestrained specimen having the highest value compared to the other specimens. Increasing the strain rate of impact loading and prestrain increases strain rate sensitivity. However, the inverse tendency is observed for the activation volume. The effect of loading rate on mechanical response and impact substructure of unprestrained and prestrained 304L stainless steel are found directly related to dislocation density, twin density and the amount of transformed martensite. By using a physically-based constitutive equation with the experimentally determined specific material parameters, the flow behaviour of unprestrained and prestrained material can be described successfully for the range of test conditions. OM and SEM fracture feature observations reveal adiabatic shear band formation is the dominant fracture mechanism. Adiabatic shear band void and crack formation are along the direction of maximum shear stress and induce specimen fracture. Microstructural observations reveal the dislocation substructure morphologies of mechanical twins, micro-shear bands and martensite formation are strongly influenced by prestrain, strain and strain rate. Equiaxed dislocation cells are found in unprestrained materials and elongated cells in prestrained materials. Mechanical twins are only found in prestrained material. Micro-shear bands and martensite are more evident at large strain and strain rate, especially for the prestrained material. Quantitative measurement reveals that dislocation, twin density and the volume-fraction of martensite increase with prestrain, strain and applied strain rate, but twin density decreases at 0.5 prestrain. These microstructrual changes are functions of work hardening stress and together account for the observed strengthening effects.

    目 錄 中 文 摘 要 I ABSTRACT III 誌 謝 V 目 錄 VI 圖 目 錄 X 表 目 錄 XVI 符 號 說 明 XVII 第一章 緒 論 1 1-1 前言 1 1-2 應變速率效應 1 1-3 預變形效應 2 1-4 構成方程式 4 1-5 動態荷載下之材料破壞 5 1-6 動態荷載下微觀組織之變化 5 1-7 研究目的與範疇 9 第二章 文獻回顧 10 2-1不銹鋼概述 10 2-2-1不銹鋼的發現 10 2-1-2不銹鋼的分類 11 2-2 304L不銹鋼之強化機構 13 2-2-1差排 14 2-2-2 麻田散鐵轉換 16 2-2-3變形雙晶 20 2-3 動態塑性變形相關理論 24 2-3-1 塑性變形機構 24 2-3-2 塑性變形之機械測試類別 27 2-3-3 波傳理論 30 2-3-4 霍普金森桿 32 2-4 構成方程式 34 2-4-1經驗構成方程式 35 2-4-2 物理基礎構成方程式 36 2-5 破壞機構-絕熱剪切 39 第三章 實驗方法與設備 50 3-1實驗流程 50 3-2實驗儀器與設備介紹 50 3-3實驗方法 55 3-3-1實驗材料準備 55 3-3-2動態撞擊測試 56 3-3-3 硬度測試 57 3-3-4 顯微結構觀察 57 3-3-5 破壞形貌觀察 58 3-3-6 導磁率量測與麻田散鐵轉換量計算 58 第四章 未預變形304L不銹鋼之撞擊機械性質與微觀組織分析 63 4-1 應力-應變曲線 63 4-2 應變速率敏感性與熱活化體積之計算 65 4-3 微觀組織的觀察 69 4-3-1 差排結構 69 4-3-2 麻田散鐵與微剪切帶 72 第五章 預變形與應變速率效應在304L不銹鋼之動態塑變特性之分析—機械性質 91 5-1應力-應變曲線 91 5-2加工硬化速率 93 5-3 應變速率敏感性與熱活化體積 96 5-4 破壞形貌特徵 98 第六章 預變形與應變速率效應在304L不銹鋼動態塑變特性之分析—微觀分析 112 6-1差排結構 112 6-2 機械雙晶 115 6-3 麻田散鐵與微剪切帶 117 6-4 差排密度、雙晶密度與麻田散鐵轉換量之量測 120 第七章 未預變形及預變形304L不銹鋼之高速撞擊特性與微觀組織比較 143 7-1應力-應變曲線之特性 143 7-2 應變速率敏感性與熱活化體積 145 7-3 變形構成方程式 147 7-4 微觀組織的觀察 149 7-5 差排密度、雙晶密度與麻田散鐵體積百分比之定量分析 152 第八章 結論與建議 166 8-1 結論 166 8-2 建議與未來展望 168 參考文獻 169

    [1] D. Peckner and I. M. Bernstein, Handbook of Stainless Steels, McGraw-Hill Publishing Company, 1977.
    [2] R. A. Lula, J. G. Parr and A. Hanson, Stainless Steel, American Society for Metals, Metals Park, Ohio, 1986.
    [3] S. L. Semiatin and J. H. Holbrook, “Plastic Flow Phenomenology of 304L Stainless Steel,” Metallurgical Transactions A, Vol. 14A, pp. 1681-1695, 1983.
    [4] S. Venugopal, S. L. Mannan and Y. V. R. K. Prasad, “Optimization of Hot Workability in Stainless Steel-Type AISI 304L Using Processing Maps,” Metallurgical Transactions A, Vol. 23A, pp. 3093-3103, 1992.
    [5] D. Sundararaman, R. Divakar and V. S. Raghunathan, “Microstructural Features of a Type 304L Stainless Steel Deformed at 1473K in the Strain Rate Interval 10-3 s-1 to 102 s-1,” Scripta Metallurgica et Materialia, Vol. 28, pp. 1077-1082, 1993.
    [6] M. C. Mataya, E. L. Brown and M. P. Riendeau, “Effect of Hot Working on Structure and Strength of Type 304L Austenitic Stainless Steel,” Metallurgical Transactions A, Vol. 21A, pp. 1969-1987, 1990.
    [7] D. P. Harvey II, J. B. Terrell, T. S. Sudarshan and M. R. Louthan, JR., “Participation of Hydrogen in the Impact Behaviour of 304L Stainless Steel,” Engineering Fracture Mechanics, Vol. 46, pp. 455-464, 1993.
    [8] B. K. Shah, A. K. Sinha, P. K. Rastogi and P. G. Kulkarni, “Effect of Prior Cold Work on Low Temperature Sensitisation Susceptibility of Austenitic Stainless Steel AISI 304,” Materials Science and Technology, Vol. 6, pp. 157-160, 1990
    [9] L. E. Murr, A. Advani, S. Shankar and D. G. Atteridge, “Effects of Deformation (Strain) and Heat Treatment on Grain Boundary Sensitization and Precipitation in Austenitic Stainless Steels” Materials Characterization, Vol. 39, pp. 575-598, 1997.
    [10] K. B. S. Rao, M. Valsan, R. Sandhya, S. L. Mannan and P Rodriguez, “An Assessment of Cold Work Effects on Strain-Controlled Low-Cycle Fatigue Behavior of Type 304 Stainless Steel” Metallurgical Transactions A, Vol. 24A, pp. 913-924, 1993.
    [11] M. Gold, W. E. Leyda and R. H. Zeisloft, “Effect of Varying Degrees of Cold Work on the Stress-Rupture Properties of Type 304 Stainless Steel,” Journal of Engineering Materials and Technology, Vol. 97, pp. 305-312, 1975.
    [12] Yutaka Iino, “Effect of Small and Large Amounts of Prestrain at 295K on Tensile Properties at 77K of 304 Stainless Steel,” JSME International Journal Series I, Vol. 35, pp. 303-309. 1992
    [13] K. P. Staudhammer and L. E. Murr, “Effect of Prior Deformation on the Residual Microstructure of Explosively Deformed Stainless Steels,” Materials Science and Engineering, Vol. 44, pp. 97-113, 1980.
    [14] P. Ludwik, Elemente Technologis, p. 32, 1909.
    [15] F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
    [16] G. R. Johnson and W. H. Cook, “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures,” Proc. 7th Intern. Symp. on Ballistics, The Hague, Netherlands, pp. 541-547, 1983.
    [17] W. S. Lee and G. W. Yeh, “The Plastic Deformation Behaviour of AISI 4340 Alloy Steel Subjected to High Temperature and High Strain Rate Loading Conditions,” Journal of Materials Processing Technology, Vol. 71, pp. 224-234, 1997.
    [18] W. S. Lee and C. F. Lin, “Plastic Deformation and Fracture Behaviour of Ti-6Al-4V alloy Loaded with High Strain Rate Under Various Temperatures,” Materials Science and Engineering A, Vol. A241, pp. 48-59, 1998.
    [19] W. S. Lee, G. L. Xiea and C. F. Lin, “The Strain Rate and Temperature Dependence of the Dynamic Impact Response of Tungsten Composite,” Materials Science and Engineering A, Vol. A257, pp. 256-267, 1998.
    [20] M. S. J. Hashmi and A. M. S. Hamouda, “Development of a One-Dimensional Constitutive Equation for Metals Subjected to High Strain Rate and Large Strain,” Journal of Strain Analysis for Engineering Design, Vol. 29, pp. 117-127, 1994.
    [21] H. Zhao and G. Gray, “The Testing and Behaviour Modeling of Sheet Metals at Strain Rates from 10-4 to 104 s-1,” Materials Science and Engineering A, Vol. A207, pp. 46-50, 1996.
    [22] S. P. Timothy and I. M. Hutchings, “Initiation and Growth of Microfractures along Adiabatic Shear Bands in Ti-6Al-4V,” Materials Science and Technology, Vol. 1, pp. 526-530, 1985.
    [23] W. S. Lee and C. F. Lin, “Adiabatic Shear Fracture of Titanium Alloy Subjected to High Strain and High Temperature Loadings” Journal de Physique IV France, colloque C3, Supplément au Journal de Physique III d’août, pp. C3-855-C3-860, 1997.
    [24] S. P. Timothy and I. M. Hutchings, “Structure of Adiabatic Shear Bands in a Titanium Alloy,” Acta Metallurgica, Vol. 33, pp. 667-676, 1985.
    [25] S. P. Timothy, “Structure of Adiabatic Shear Bands in Metals: A Critical Review,” Acta Metallurgica, Vol. 35, pp. 301-306, 1987.
    [26] A. J. Bedford, A. L. Wingrove and K. R. L. Thompson, “Phenomenon of Adiabatic Shear Deformation,” Journal of the Australian Institute of Metals, Vol. 19, pp. 61-73, 1974.
    [27] L. E. Murr, “Residual Microstructure-Mechanical Property Relationships in shock-Loaded Metals and Alloys,” in M.A. Meyers and L.E. Murr (Eds.), Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Chapter 37, Plenum Press, New York, 1981, pp. 607-673.
    [28] M. A. Meyers, U. R. Andrade and A. H. Chokshi, “The Effect of Grain Size on the High-Strain-Rate Behaviour of Copper,” Metallurgical and Materials Transactions A, Vol. 26A, pp. 2881-2893, 1995.
    [29] R. L. Nolder and G. Thomas, “Mechanical Twinning in Nickel,” Acta Metallurgica, Vol. 11, pp. 994-995, 1963.
    [30] H. J. Lai and C. M. Wan, “The Study of Deformation Twins in the Austenitic Fe-Mn-C and Fe-Mn-Al-C Alloys,” Scripta Metallurgica, Vol. 23, pp. 179-182, 1989.
    [31] R. L. Nolder and G. Thomas, “The Substructure of Plastically Deformed Nickel,” Acta Metallurgica, Vol. 12, pp. 227-240, 1964.
    [32] F. Greulich and L. E. Murr, “Effect of Grain Size, Dislocation Cell Size and Deformation Twin Spacing on the Residual Strengthening of Shock-Loaded Nickel,” Materials Science and Engineering, Vol. 39, pp. 81-93, 1979.
    [33] R. J. DeAngelis and J. B. Choen, “Effects of Shock Loading on Copper, Part III,” Journal of Metals, Vol. 15, p. 681, 1963.
    [34] K. Wongwiwat and L. E. Murr, “Effect of Shock Pressure, Pulse Duration, and Grain Size on Shock-Deformation Twinning in Molybdenum,” Metarials Science and Engineering, Vol. 35, pp. 273-285, 1978.
    [35] R. W. Rohde, W. C. Leslie and R. C. Glenn, “The Dynamic Yield Behavior of Annealed and Cold-Worked Fe-0.17 pct Ti Alloy,” Metallurgical Transactions, Vol. 3, pp. 323-328, 1972.
    [36] A. S. Ken and S. Weissmann, Electron Microscopy and Strength of Crystals, (ed. G. Thomas et al.), pp. 231-300, 1963, New York, John Wiley & Sons.
    [37] G. B. Olson and M. Cohen, “Kinetics of Strain-Induced Martensitic Nucleation,” Metallurgical Transactions A, Vol. 6A, pp. 791-795, 1975.
    [38] P. C. Maxwell, A. Goldberg and J. C. Shyne, “Stress-Assisted and Strain-Induced Martensites in Fe-Ni-C Alloys,” Metallurgical Transactions, Vol. 5, pp. 1305-1318, 1974.
    [39] Pat L. Mangonon, Jr. and G. Thomas, “The Martensite Phases in 304 Stainless Steel,” Metallurgical Transactions, Vol. 1, pp. 1577-1587, 1970.
    [40] Pat L. Mangonon, Jr. and G. Thomas, “Structure and properties of Thermal-Mechanically Treated 304 Stainless Steel,” Metallurgical Transactions, Vol. 1, pp. 1587-1594, 1970.
    [41] J. W. Brooks, M. H. Loretto and R. E. Smallman, “In Situ Observations of the Formation of Martensite in Stainless Steel,” Acta Metallurgica, Vol. 27, pp. 1829-1838, 1979.
    [42] A. Kumar and L. K. Singhal, “Effect of Strain Rate on Martensitic Transformation During Uniaxial Testing of AISI-304 Stainless Steel,” Metallurgical Transactions A, Vol. 25A, pp. 1151-1162, 1989.
    [43] L. E. Murr, K. P. Staudhammer and S. S. Hecker, “Effect of Strain and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel : Part2. Microstructural Study,” Metallurgical Transactions A, Vol. 13A, pp. 627-635, 1982.
    [44] K. P. Staudhammer, L. E. Murr and S. S. Hecker, “Nucleation and Evolution of Strain-Induced Martensitic (b.c.c.) Embryos and Substructure in Stainless: A Transmission Electron Microscope Study,” Acta Metallurgica, Vol. 31, No. 2, pp. 267-274, 1983.
    [45] F. Lecroisey and A. Pineau, “Martensitic Transformations Induced by Plastic Deformation in the Fe-Ni-Cr-C System,” Metallurgical Transactions, Vol. 3, pp. 387-396, 1972.
    [46] R. Lagneborg, “The Martensite Transformation in 18% Cr-8% Ni steels,” Acta Metallurgica, Vol. 12, pp. 823-843, 1964.
    [47] G. B. Olson and M. Cohen, “A General Mechanism of Martensitic Nucleation: Part I. General Concepts and the fcc-hcp Transformation, A General Mechanism of Martensitic Nucleation: part II. FCC-BCC and Other Martensitic Transformations, A General Mechanism of Martensitic Nucleation: part III. Kinetics of Martensitic Nucleation,” Metallurgical Transactions A, Vol. 7A, pp. 1897-1923, 1976.
    [48] G. Stone and G. Thomas, “Deformation Induced Alpha and Epsilon Martensites in Fe-Ni-Cr Single Crystals,” Metallurgical Transactions, Vol. 5, pp. 2095-2102, 1974.
    [49] S. K. Varma, J. Kalyanam, L. E. Murr and V. Srinivas, “Effect of Grain Size on Deformation-Induced Martensite Formation in 304 ANF 316 Stainless Steels during Room Temperature Tensile Testing,” Journal of Materials Science Letters, Vol. 13, pp. 107-111, 1994.
    [50] J. Y. Choi and W. Jin, “Strain Induced Martensite Formation and Its Effect on Strain Hardening Behavior in the Cold Drawn 304 Austenitic Stainless Steels,” Scripta Materialia, Vol. 36, pp. 99-104, 1997.
    [51] T. Tsuta, R. Cortes and A. Jorge, ”Flow Stress and Phase Transformation Analyses in Austenitic Stainless Steel under Cold Working (Part 2. Incremental Theory under Multiaxial Stress State by the Finite-Element Method),” JSME International Journal, Series A: Mechanics and Material Engineering, Vol. 36, pp. 63-72, 1993.
    [52] M. G. Stout and P. S. Follansbee, “Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel,” Journal of Engineering Materials and Technology (Transactions of the ASME), Vol. 108, pp. 344-353, 1986.
    [53] V. Talyan, R. H. Wagoner and J. K. Lee, “Formability of Stainless Steel,” Metallurgical and Materials Transactions A, Vol. 29A, pp. 2161-2172, 1998.
    [54] A. H. Advani, L. E. Murr, D. J. Matlock R. J. Romero, W. W. Fisher, P. M. Tarin, J. G. Maldonado, C. M. Cedillo, R. L. Miller and E. A. Trillo, “Deformation-Induced Microstructure and Martensite Effects on Transgranular Carbide Precipitation in Type 304 Stainless Steels,” Acta Metallurgica et Materialia, Vol. 41, pp. 2589-2600, 1993.
    [55] J. S. Chang and S. S. Chou, “Microstructures and Formability of Type 304 Stainless Steel in Deep Drawing,” Scripta Metallurgica et Materialia, Vol. 31, pp. 1291-1296, 1994
    [56] J. S. Chang and S. S. Chou, “Microstructural Effects on Formability of Type 304 Stainless Steel Sheet in Cylindrical Deep Drawing,” Journal of Materials Engineering and Performance, Vol. 3, pp. 551-559, 1994.
    [57] S. Venugopal, S. L. Mannan and Y. V. R. K. Prasad, “Influence of Strain Rate and State-of-Stress on the Formation of Ferrite in Stainless Steel Type 304 during Hot Working,” Materials Letters, Vol. 26, pp. 161-165, 1996.
    [58] L. E. Murr and K. P. Staudhammer, “Effect of Stress Amplitude and Stress duration on Twinning and Phase Transformations in Shock Loaded and Cold-Rolled 304 Stainless Steel,” Materials Science and Engineering, Vol. 20, pp. 35-46, 1975.
    [59] K. P. Staudhammer and L. E. Murr, “The Effect of Prior Deformation on the Residual Microstructure of Explosively Deformed Stainless Steels,” Material Science and Engineering, Vol. 44, pp. 97-113, 1980.
    [60] K. A. Johnson, L. E. Murr and K. P. Staudhammer, “Comparison of Residual Microstructures for 304 Stainless Steel, Shock Loaded in Plane and Cylindrical Geometries: Implications for Dynamic Compaction and Forming,” Acta Metallurgica, Vol. 33, No. 4, pp. 677-684, 1985.
    [61] M. Gerland and M. Hallouin, “Effect of Pressure on the Microstructure of an Austenitic Stainless Steel Shock-Loaded by Very Short Laser Pulses,” Journal of Materials Science, pp. 345-351, 1994.
    [62] R. Montanari, “Microstructural Evolution of AISI 304 Steel after Repeated Shock Loadings,” Materials Letters, Vol. 15, pp. 73-78, 1992.
    [63] S. S. Hecker, M. G. Stout, K. P. Staudhammer and J. L. Smith, “Effect of Strain Rate and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior,” Metallurgical Transactions. A, Vol. 13A, pp. 619-626, 1982.
    [64] 潘永村,劉宏義,李至隆,"不銹鋼之發展沿革與用途",技術與訓練,21卷,5期,頁1-16,民國85年。
    [65] C. A. Zapffe, Stainless Steel, ASM, 1949.
    [66] R. W. K. Honeycombe, The Plastic Deformation of Metals, 2nd Edition, Edward Arnold, London, pp. 29-31, 1984.
    [67] R. W. K. Honeycombe, The Plastic Deformation of Metals, 2nd Edition, Edward Arnold, London, pp. 129-132, 1984.
    [68] M. A. Meyers and K. K. Chawla, Mechanical Metallurgy-Principles and Applications, Prentice-Hall, New Jersey, pp. 354-358, 1984.
    [69] M. A. Meyers, Dynamic Behavior of Materials, John Wiley & Sons, New York, pp. 401-408, 1994.
    [70] G. L. Wulf, “High Strain Rate Compression of 1023 and 4130 Steels,” International Journal of Mechanical Sciences, Vol. 20, pp. 843-848, 1978.
    [71] R. N. Wright and D. E. Mikkola, “High Strain Rate Deformation of Mo and Mo-33Re by Shock Loading: Part I. Substructure Development,” Metallurgical Transactions A, Vol. 16A, pp. 881-890, 1985.
    [72] W. S. Lee and G. W. Yeh, "The Plastic Deformation Behaviour of AISI 4340 Alloy Steel Subjected to High Temperature and High Strain Rate Loading Conditions", Journal of Materials Processing Technology, Vol. 71, pp. 224-234, 1997.
    [73] G. Langford and M. Cohen, “Strain Hardening of Iron by Severe Plastic Deformation,” Transactions of the ASM, Vol. 62, pp. 623-638, 1969.
    [74] J. R. Patel and M. Cohen, “Criterion for the Action of Applied Stress in the Martensitic Transformation,” Acta Metallurgica, Vol. 1, pp. 531-538, 1953.
    [75] T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto and M. Ichihara, “Experimental Study of the Martensite Nucleation and Growth in 18/8 Stainless Steel,” Acta Metallurgica, Vol. 25, pp. 1151-1162, 1977.
    [76] J. W. Brooks, M. H. Loretto and R. E. Smallman, “In Situ Observations of the Formation of Martensite in Stainless Steel,” Acta Metallurgica, Vol. 27, pp. 1829-1838, 1979.
    [77] J. A. Venables, “The Martensite Transformation in Stainless Steel,” The Philosophical Magazine, Vol. 7, pp. 35-1184, 1962.
    [78] J. W. Christian and S. Mahajan, “Deformation Twin,” Progress in Materials Science, Vol. 39, pp. 1-157, 1995.
    [79] J. B. Cohen and J. Weertman, “ A Dislocation Model for Twinning in F.C.C. Metals,” Acta Metallurgica, Vol. 11, pp. 996-998, 1963.
    [80] M. A. Meyers, R. W. Armstrong and H. O. K. Kirchner, Mechanics and Maerials – Fundametals and Linkages, John Wiley & Sons, New York, pp. 525-529, 1999.
    [81] J. A. Venables, “The Nucleation and Propagation of Deformation Twins,” The Journal of Physics and Chemistry of Solids, Vol. 25, pp. 693-700, 1964.
    [82] S., Mahajan and G. Y. Chin, “Formation of Deformation Twins in F. C. C. Crystals,” Acta Metallurgica, Vol. 21, pp. 1353-1363, 1973.
    [83] G. T. Gray III, “Deformation Twinning in Al-4. 8 wt% Mg,” Acta Metallurgica, Vol. 36, pp. 1745-1754, 1988.
    [84] U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” Journal of the Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
    [85] D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, p. 951, 1970.
    [86] J. D. Campbell and W. G. Ferguson, “The Temperature and Strain Dependence of the Shear Strength of Mild Steel,” The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
    [87] M. A. Meyers, R. W. Armstrong and H. O. K. Kirchner, Mechanics and Maerials – Fundametals and Linkages, John Wiley & Sons, New York, p. 512, 1999.
    [88] H. Kolsky, “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading,” Proceedings of the Physical Society, Vol. 62. pp. 676-700, 1949.
    [89] K. A. Hartley, J. Duffy and R. H. Hawley, “Measurement of the Temperature Profile during Shear Band Formation in Steels Deforming at High Strain Rates,” Journal of the Mechanics and Physics of Solids, Vol. 35, pp. 283-301, 1987.
    [90] S. K. Samanta, “Dynamic Deformation of Aluminum and Copper at Elevated Temperatures” Journal of the Mechanics and Physics of Solids, Vol. 19, pp. 117-135, 1971.
    [91] F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Metals and High Strength Alloy Steels,” in High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, AD-Vol. 48, pp. 121-126, 1995.
    [92] Y. Bai and B. Dood, Adiabatic Shear Localization, Pergamon Press, Oxford, pp. 1-3, 1992.
    [93] H. C. Rogers, “Adiabatic Plastic Deformation,” Annual Review of Materials Science, Vol. 9, pp. 283-311, 1979.
    [94] S. P. Timothy, “Structure of Adiabatic Shear Bands in Metals: A Critical Review,” Acta Metallurgica, Vol. 35, pp. 301-306, 1987.
    [95] A. Marchand and J. Duffy, “Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel,” Journal of the Mechanics and Physics of Solids, Vol. 36, pp. 251-283, 1988.
    [96] M. E. Backman, S. A. Schulz, J. C. Schulz and J. K. Pringle, “Scaling Rules for Adiabatic Shear,” in Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L. E. Murr, K. P. Staudhammer and M. A. Meyers) pp. 675-688, Marcel Dekker Inc., New York, 1986.
    [97] M. A. Meyers and H. R. Pak, “Observation of an Adiabatic Shear Band in Titanium by High-Voltage Transmission Electron Microscopy,” Acta Metallurgica, Vol. 34, pp. 2493-2499, 1986.
    [98] A. S. Douglas and H. T. Chen, “Adiabatic Localization of Plastic Strain in Anti-Plane Shear,” Scripta Metallurgica, Vol. 19, pp. 1277-1280, 1985.
    [99] P. Redanz and V. Tvergaard, “Analysis of Shear Band Instabilities in Sintered Metals,” International Journal of Solids and Structures, Vol. 36, pp. 3661-3676, 1999.
    [100] W. B. Lee, S. To and C. Y. Chan, “Deformation Band Formation in Metal Cutting,” Scripta Materialia, Vol. 40, pp. 439-443, 1999.
    [101] M. A. Meyers, “A Mechanism for Dislocation Generation in Shock-Wave Deformation,” Scripta Metallurgica, Vol. 12, pp. 21-26, 1978.
    [102] W. C. Leslie, J. T. Michalak and F. W. Aul, Iron and Its Dilute Solid Solutions, Wiley, New York, pp. 119, 1963.
    [103] L. E. Murr, “Work Hardening and the Pressure Dependence of Dislocation Density and Arrangements in Shock Loaded Nickel and Copper,” Scripta Metallurgica, Vol. 12, pp. 201-206, 1978.
    [104] R. K. Ham, “The Determination of Dislocation Densities in Thin Films,” The Philosophical Magazine, Vol. 6, pp. 1183-1184, 1961.
    [105] P. S. Follansbee and U. F. Kocks, “Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable,” Acta Metallurgica, Vol. 36, pp. 81-93, 1988.
    [106] J. N. Johnson and D. L. Tonks, American Physical Society Topical Conference on the Shock Compression of Condensed Material, Willamsbrug, VA, 1991.
    [107] F. J. Zerilli and R. W. Armstrong, “Effect of Dislocation Drag on the Stress-Strain Behavior of F.C.C. Metals,” Acta Metallurgica et Materialia, Vol. 40, pp. 1803-1808, 1992
    [108] D. C. Ludwigson, “Modified Stress-Strain Relation for FCC Metals and Alloys,” Metallurgical Transactions, Vol. 2, pp. 2825-2828, 1971.
    [109] J. D. Campbell, “Review Paper Dynamic Plasticity: Macroscopic and Microscopic Aspects” Materials Science and Engineering, Vol. 12, pp. 3-21, 1973.
    [110] M. A. Meyers, G. Subhash, B. K. Kad and L. Prasad, “Evolution of Microstructure and Shear-Band Formation in -hcp Titanium,” Mechanics of Materials, Vol. 17, pp. 175-193, 1994.
    [111] J. Harding, “Effect of Temperature and Strain Rate on Strength and Ductility of Four Alloy Steels,” Metals Technology, Vol. 4, pp. 6-16, 1977.
    [112] M. Blicharski and S. Gorczyca, “Structural Inhomogeneity of Deformed Austenitic Stainless Steel,” Metal Science, pp. 303-312, 1978.
    [113] W. P. Longo and R. E. Reed-Hill, “Analysis of Work Softening in Polycrystalline Ni,” Metallography, Vol. 4, pp. 181-201, 1974.
    [114] J. Gil Sevillano, P. Van Houtte and E. Aernoudt, “Large Strain Work Hardening and Textures,” Progress in Materials Science, Vol. 25, pp. 69-412, 1981.
    [115] M. Blicharski and S. Gorczyca, “Structural Inhomogeneity of Deformed Austenitic Stainless Steel,” Metal Science, July, pp. 303-312, 1978.
    [116] I. Lapczyk, K. R. Rajagopal and A. R. Srinivasa, “Deformation Twinning during Impact of a Titanium Cylinder-Numerical Calculations Using a Constitutive Theory Based on Multiple Natural Configurations,” Computer Methods in Applied Mechanics and Engineering, Vol. 188, pp. 527-541, 2000.

    下載圖示 校內:立即公開
    校外:2002-07-19公開
    QR CODE