簡易檢索 / 詳目顯示

研究生: 陳炳勳
Chen, Bing-Xun
論文名稱: 原子力顯微鏡V型微懸臂探針的分析
Analysis on the V-Shaped Cantilever Beam of Atomic Force Microscopy
指導教授: 李森墉
Lee, Sen-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 87
中文關鍵詞: 原子力顯微鏡V型微探針
外文關鍵詞: AFM, V-shaped
相關次數: 點閱:127下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文提出一個解法,可以求出原子力顯微鏡(AFM)之V型微探針在非線性原子力邊界條件下之確切靜態撓度,另外也求出在彈性邊界與薄膜阻尼下的動態解。首先考慮一般情況下的探針物理模型,推導出其統御方程式和邊界條件。再分別討論靜態位移和動態共振頻率,由於V 型樑的特殊造型,用連續條件求出系統的正解。研究探針-樣品表面間之非線性力作用與探針撓度的關係、各種參數對系統靈敏度之影響;非接觸量測模式(non-contact mode)之尺寸改變與薄膜阻尼對共振頻率影響的問題。

      A new method is proposed to drive exact static deflection of AFM (atomic force microscopy) V-shaped probe with nonlinear atomic force boundary, and dynamic natural frequency with elastic root and squeeze film damping. First, drive the governing equation and boundary conditions of a general physical model. And discuss static deflection and dynamic resonance frequency respectively. Use continuity condition to derive the solution due to the geometry of V-shaped cantilever tip.
      Investigate the influence of natural frequency shifting by probe dimension in the non-contact model, the relation between deflection of beam and tip-surface distance, and the influence of sensitivity of measurement by some parameters.

    中文摘要 I Abstract III 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 X 第一章 緒論 1 1.1 前言 1 1.2 原子力顯微鏡微探針之介紹 2 1.3文獻回顧 4 1.3.1原子力顯微鏡靜態量測 4 1.3.2原子力顯微鏡V型探針動態量測 5 1.3.3微系統之阻尼特性 6 1.4 研究動機及目的 8 第二章 物理模型分析 10 2.1 一般問題 10 2.2 靜態問題 15 2.2.1 無因次化的統御方程式及邊界條件 18 2.2.2 變數變換法 19 2.2.3 V型探針 22 2.2.4 移位函數 22 2.2.5 轉換函數 23 2.2.6 連續條件 26 2.3 動態問題 33 2.3.1 無因次化的統御方程及邊界條件 36 2.3.2 V型樑之無因次參數 37 2.3.3 統御方程式及邊界條件 38 2.3.4 頻率方程式 40 2.3.5 第一段確切基本解 42 2.3.6 第二段確切基本解 47 2.3.7 連續條件 51 第三章 數值分析與討論 58 3.1 V型微探針之靜態分析 58 3.2 無阻尼V型微探針之分析與討論 69 3.3 具阻尼V型微探針之數值分析與討論 74 第四章 結論 81 參考文獻 82

    [1] Binnig, G., Roher, H., Gerber, H. and Weibel E. “Surface studied by scanning tunneling microscopy,” Physical Review Letters, Vol. 49, pp. 57-61, 1982.
    [2] Binnig, G., Quate, C. F., and Gerber, Ch., “Atomic force microscope,” Physical Review Letters, Vol. 56, pp. 930-933, 1986.
    [3] Holscher, H., Schwarz, U. D, Wiesendanger, R., “Calculation of the frequency shift in dynamic force microscopy,” applied surface science, Vol.140, pp. 344-351, 1999.
    [4] Sasaki, N., Tsukada, M., Tamura,R., Abe,K.,Sato,N., “Dynamics of the cantilever in noncontact atomic force microscopy,” Applied physics A : Materials, Vol.66, pp. 287-291, 1998
    [5] Rabe, U., Janser, K., and Amold,W., “Vibrations of free and surface-coupled force microscope cantilevers : Theory and experiment,” American institute of physics, Vol.67, pp. 3281-3293, 1996
    [6] Fung, R. F., Huang, S. C., “Dynamic modeling and vibration analysis of the atomic force microscope,” ASME, Journal of Vibration and Acoustics, Vol.123, pp. 502-509, 2001
    [7] Sokolov, I. Y., Henderson, G. S.,Wicks, F. J., “Model dependence of AFM simulations in non-contact mode, ” surface science, Vol.457, pp. 267-272, 2000
    [8] Holscher, H., Schwarz, U. D, Wiesendanger, R., “Calculation of the frequency shift in dynamic force microscopy,” applied surface science, Vol.140, pp. 344-351, 1999.
    [9] Sasaki, N., Tsukada, M., Tamura,R., Abe,K.,Sato,N., “Dynamics of the cantilever in noncontact atomic force microscopy,” Applied physics A Materials, Vol.66, pp. 287-291, 1998.
    [10] Rabe, U., Janser, K., and Amold,W., “Vibrations of free and surface-coupled force microscope cantilevers : Theory and experiment,” American institute of physics, Vol.67, pp. 3281-3293, 1996.
    [11] Weigert, S., Dreier, M., and Hegner, M., “Fequency shifts of cantilevers vibrating in various media,” Appl. phys. letter.,Vol.69, pp.2834-2836, 1996.
    [12] Fung, R. F., Huang, S. C., “Dynamic modeling and vibration analysis of the atomic force microscope,” transactions of ASME, Vol.123, pp. 502-509, 2001.
    [13] Sokolov, I. Y., Henderson, G. S.,Wicks, F. J., “Model dependence of AFM simulations in non-contact mode, ” surface science, Vol.457, pp. 267-272, 2000.
    [14] Neumeister J. M., Ducker W. A., “Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers,” Rev. Sci. Instrum., Vol. 65(8), pp.2527-2531, 1994
    [15] Cleveland J. P., Manne S., Bocek D., Hansma P. K., “A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy,” Rev. Sci. Instrum., Vol. 64 (2), pp.403-405, 1993
    [16] Hazel J. L., Tsukruk V. V., “Spring constants of composite ceramic/gold cantilevers for scanning probe microscopy,” Thin Solid Films, Vol. 339, pp.249-257, 1999
    [17] Gibson C. T., Weeks B. L., Abell C., Rayment T., Myhra S., “Calibration of AFM cantilever spring constant,” Rev. Sci. Instrum., Vol. 97, pp.113-118, 2002
    [18] Sader, J. E., “Parallel beam approximation for V-shaped atomic force microscope cantilevers,” Rev. Sci. Instrum., Vol. 66(9), pp.4583-4587, 1995
    [19] Sader, J. E., White L., “Theoretical analysis of the static deflection of plates for atomic force microscope applications,” J. Appl. Phys., Vol. 74(1), pp.1-9, 1993
    [20] Sader, J. E., “Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: V-shaped plates,” American Institute of Physics, Vol. 91, pp.9354-9361, 2002
    [21] Kokubun, K., Murakami, H., Toda, Y. and Ono, M., “A bending and stretching mode crystal oscillator as friction vacuum gauge,” Vacuum, Vol. 34, pp. 731-735, 1984
    [22] Blom, F.R., Bouwstra, S., Elwenspoek, M. and Fluitman, J.H.J., “Dependence of the quality factor of micro-machined silicon beam resonators on pressure and geometry,” J. vac. Sci. Technol., B10, pp. 19-26, 1992
    [23] Hirano, T., Funrehata, T., Gabriel, K. J. and Fujita, “Effect of air damping and suspension compliance on electrostatic comb-drive actuators with sub-micron gap,” Proc. 2nd Int. Symp. Measurement and Control in Robotics, pp. 507-512, 1992
    [24] Murakami, Y. and Moronuki, N., “study on the design of micro-machine,” 1st Report, Proc. Jpn. Soc. Precision Eng., pp. 919-920, 1993.
    [25] Matsuda, R. and Fukui, S., “Asymptotic analysis of ultra-thin gas squeeze film lubrication for infinitely large squeeze number,” ASME Paper 94-Trib-2, 1994
    [26] Darling, R. B., Hivick, C., and Xu, J., “Compact analytical modeling squeeze film damping with arbibratrary venting conditions using a Green’s function approach,” Sensors and Actuators, Vol. A70, pp. 32-41, 1998
    [27] Xu, Y. and Smith, S. T, “Determination of squeeze film damping in capacitance-based cantilever force probes,” Precision Engineering, Vol. 17, pp. 94-100, 1995
    [28] Hiroshi Hosaka, Kiyoshi Itao, Susumu Kuroda, “Damping characteristics of beam-shaped micro-oscillators,” Sensors and Actuators A Physical, Vol. 49, pp.87-95, 1995
    [29] Chen, G. Y., Warmack, R. J., Thundat, T., Allison, D. P., “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum., Vol. 65(8), pp.2532-2537, 1994
    [30] Fung, R. F., Huang, S. C., “Dynamic modeling and vibration analysis of the atomic force microscope,” ASME, Journal of Vibration and Acoustics, Vol.123, pp. 502-509, 2001
    [31] Lee, S. Y. and Lin, S. M., “Dynamic analysis of non-uniform beams with time-dependent elastic boundary conditions,” ASME Journal of Applied Mechanics, Vol. 63, pp. 474-478, 1996
    [32] Lin, S. M., “Dynamic analysis of Rotating nonuniform Timoshenko beams with an Elastically restrained root,” ASME Journal of Applied Mechanics, Vol. 66, pp. 742-749, 1999
    [33] Lee, S. Y., Lin, S. M., “Exact solutions for the vibrations of an elastically restrained nonuniform Timoshenko beam with tip mass,” AIAA Journal, Vol. 30, No. 12, pp. 2930-2934, 1992
    [34] Tortonese, M., “Cantilevers and tips for atomic force microscopy,” IEEE Eng. Med. Biol., Vol. 16(2), pp.28-33, 1997
    [35] Sader, J. E., Larson I., Mulvaney P., White L. R., “Method of the calibration of atomic force microscope cantilevers,” Rev. Sci. Instrum., Vol. 66(7), pp.3789-3798, 1995
    [36] Meirovitch, L., “Analytical methods in vibration,” The Macmillan company, pp.163, 1967
    [37] Holscher, H., Schwarz, U. D., Wiesendanger, R., “Calculation of the frequency shift in dynamic force microscopy,” Applied Surface Science, Vol.140, pp. 344-351, 1999
    [38] 林昆蔚, “非接觸式原子力顯微鏡探針振動分析” ,國立成功大學機械工程學系碩士論文, 2003

    下載圖示 校內:立即公開
    校外:2004-07-13公開
    QR CODE