簡易檢索 / 詳目顯示

研究生: 張沛柔
Chang, Pei-Jou
論文名稱: 基樁抗液化側潰性能之研究
A Study on the Resistance Performance of Piles Subjected to Liquefaction-Induced Lateral Spreading
指導教授: 柯永彥
Ko, Yung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 96
中文關鍵詞: 土壤液化側潰基樁抗側潰性能溫克基礎縮尺物理模型試驗
外文關鍵詞: soil liquefaction, lateral spreading, pile resistance performance to lateral spreading, Winkler foundation, scaled physical modeling
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地震發生時,土壤液化為常見之地工災害,並可能因此造成地盤之側潰,對地下工程構造物如基礎等造成危害。本研究針對工程上常用之樁基礎,探討土壤液化所引致側潰作用對基樁之影響及基樁之抵抗性能。研究方法兼採數值分析與物理模型試驗,首先,回顧過去液化側潰引致基樁破壞之歷史案例與相關前人研究,採用SAP2000有限元素分析軟體,利用溫克基礎模式針對側潰對基樁造成之影響進行數值分析,藉此與實際情況與前人研究成果相互比較印證,並探討以不同加載模式模擬側潰作用時分析所得之基樁反應有何差異。另一方面,進行縮尺物理模型試驗,以剛性試驗箱容納地盤試體,透過注水系統使地盤達到之液化並側潰,觀察其對模型樁造成之影響,試驗過程中量測樁身應變、樁頭位移與樁身之變位,並基於梁理論分析樁身所受之彎矩、剪力、土壤反力等,發現模型樁受液化側潰作用時之行為與數值分析之結果相似,並展現出地盤不同位置之土壤反力特性差異。相關成果將有助於釐清基樁受液化側潰作用下之行為,合理掌握基樁之抗液化側潰性能,並可回饋至結構基礎之耐震設計,以減輕液化之危害。

    Soil liquefaction is a common geotechnical disaster during earthquakes, which could lead to lateral spreading of the ground, causing damage to underground structures such as pile foundations. This study aimed to investigate the impact of liquefaction-induced lateral spreading on piles and their resistance performance using numerical analysis and scaled physical modeling. First, historical cases of pile failure cause by lateral spreading and the associated studies were reviewed. The SAP2000 finite element software was adopted for the numerical analysis of this case using the Winkler foundation method. The results are compared with the field observations and findings of the existing research to examine the differences in pile responses obtained by numerical analysis with various loading modes to simulate lateral spreading. Additionally, several scaled-model tests were performed using controlled seepage to induce liquefaction and lateral spreading of a ground specimen accommodated by a rigid box. During the tests, the strain and displacement of an embedded model pile was measured. The observed behavior of the model pile approximated that in the numerical analysis and also reveal the diverse characteristics of soil resistance at different depths. These findings contribute to the clarification of pile behavior under the influence of liquefaction-induced lateral spreading and a better understanding of the resistance performance of piles, which are beneficial for the seismic design of structural foundations. Thus, the hazards of soil liquefaction can be reduced.

    摘要I Extended Abstract II 誌謝VI 目錄VII 圖目錄IX 表目錄XIII 第一章緒論1 1.1 研究背景與目的1 1.2 研究方法與流程2 1.3 論文架構4 第二章 文獻回顧5 2.1 側潰引致基樁破壞案例回顧5 2.1.1 新潟地震災情概述5 2.1.2 新潟地震相關前人研究5 2.1.3 神戶地震案例概述7 2.1.4 神戶地震相關前人研究8 2.2 基樁側向承載性能分析方法11 2.2.1 基樁受側向力作用之破壞模式11 2.2.2 溫克基礎模式11 2.2.3 非線性基礎梁模式14 2.2.4 基樁受液化側潰作用之簡化分析模式21 2.2.5 基樁受液化側潰作用之物理模型試驗23 第三章 研究方法26 3.1 基樁抗液化側潰性能評估案例研究26 3.1.1 新潟地震家庭裁判所案例:現地實際情況27 3.1.2 新潟地震家庭裁判所案例:Meyersohn (1994)數值分析28 3.1.3 新潟地震家庭裁判所案例:Dobry et al. (1996)模型試驗30 3.1.4 新潟地震家庭裁判所案例:本研究之樁-土互制分析模型30 3.1.5 神戶地震神戶港案例34 3.2 物理模型試驗38 3.2.1 物理模型製作38 3.2.2 試驗設備41 3.2.3 量測配置43 3.2.4 模型樁之彎矩-轉角關係48 第四章 案例研究結果49 4.1 新潟地震家庭裁判所案例49 4.1.1 Meyersohn (1994) 數值分析49 4.1.2 Dobry et al. (1996)物理模型試驗58 4.1.3 現地實際情況62 4.2 神戶地震神戶港案例69 4.3 綜合討論72 第五章 試驗結果73 5.1 試驗概述與資料處理73 5.2 Phase 1結果75 5.3 Phase 2結果80 5.4 Phase 3結果84 第六章 結論與建議90 6.1 結論90 6.2 建議92 第七章 參考文獻93

    1. 日本道路協会(JRA) (2012) ,道路橋示方書・「同解說–V 耐震設計編」。
    2. 日本建築學會(2001) ,「建築基礎構造設計指針」。
    3. 內政部 (2001) ,建築物耐震評估法之修訂及視窗化研究。
    4. 李喬茵,「縮尺模型樁受震時之樁土互制反應」,國立成功大學土木工程研究所,碩士論文,2020。
    5. 林昌良,「飽和砂中模型樁之側向載重試驗」,國立台灣大學土木工程學系,碩士論文, (2011)
    6. 周柏儒,「利用動力三軸試驗探討土壤動態性質-剪應變-超額孔隙水壓間之關係」,國立成功大學土木工程研究所,碩士論文,2022。
    7. 時松孝次、大岡弘、社本康広、浅香美治 (1997) ,兵庫県南部地震の側方流動による杭の破壊・変形モード,日本建築学会構造系論文集,第495号,95-100頁。
    8. 張德文、林伯勳、鄭世豪、葉健輝 (2006) ,「樁基礎受液化和地盤側向流動之結構行為分析(2/2) 研究成果報告」。
    9. 張皓宇,「液化地盤側潰現向之物理模型試驗技術與變位特性研究」,國立成功大學土木工程研究所,碩士論文,2023。
    10. 陳正興、黃俊鴻 (2016) ,基礎性能分析,財團法人地工技術研究發展基金會。
    11. 鍾明劍、黃俊鴻、呂昱達 (2007) ,「液化流動壓作用下基樁耐震性能之側推分析」,中國土木水利工程學刊,第十九卷,第四期,515–527頁。
    12. Ashford, S.A., Boulanger, R.W., Brandenberg, S.J. (2011). Recommended Design Practice for Pile Foundations in Laterally Spreading Ground, PEER, Berkeley, CA.
    13. American Petroleum Instittute (API), “Recommended practice for planning, designing, and constructing fixed offshore platforms.” API Report No. 2A-WSD, API, Houston. (2010)
    14. Cubrinovski, M., Ishihara, K. (2004), “Simplified method for analysis of piles undergoing lateral spreading in liquefied soils”, Soils and Foundations, 44(5), 119~133.
    15. Chiou, J.S., Huang, T.J., Chen, C.L., Chen, C.H. (2021), “Shaking table testing of two single piles of different stiffnesses subjected to liquefaction-induced lateral spreading”, Engineering Geology, 281, 105956.
    16. Dobry, R., Abdoun, T., O’Rourke, T.D., and Goh, S.H. (2003), “Single piles in lateral spreads: field bending moment evaluation,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 10, pp. 879−889.
    17. Dobry, Ricardo and Abdoun, Tarek, (2001) "Recent Studies on Seismic Centrifuge Modeling of Liquefaction and Its Effects on Deep Foundations". International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 2.
    18. Dobry, R., Abdoun, T.H. and O'Rourke, T. D., (1996), “Evaluation of Pile Response Due to Liquefaction-Induced Lateral Spreading of the Ground,” Proc. 4th Caltrans Seismic Research Workshop, Sacramento, CA, July, 10 pages.
    19. Hetenyi, M., “Beams on Elastic Foundation”, University of Michigan.(1946)
    20. Hamada, M., (1992), “Large Ground Deformations and their Effects on Lifelines: 1964 Niigata Earthquake,” Ch. 3 of Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Vol. 1: Japanese Case Studies, (Hamada and O’Rourke, eds.), 3-1 to 3~123.
    21. Haeri, S.M., Kavand, A., Rahmani, I., Torabi, H. (2012), “Response of a group of piles to liquefaction–induced lateral spreading by large scale shake table testing”, Soil Dynamics and Earthquake Engineering, 38, 25~45.
    22. J. S. Chiou, H. H. Yang, and C. H. Chen, “Use of plastic hinge model in nonlinear pushover analysis of a pile,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 135, no. 9, pp. 1341–1346, 2009.
    23. Ko, Y.Y., Chiou, J.S., Tsai, Y.C., Chen, C.H., Wang, H., Wang, C.Y. (2014) “Evaluation of Flood-Resistant Capacity of Scoured Bridges” Journal of Performance of Constructed Facilities-ASCE, 28(1), pp. 61~75.
    24. Meyersohn, W. D. (1994). “Pile response to liquefaction induced lateral spread.” PhD thesis, Dept. of Civil and Environmental Engineering, Cornell University, Ithaca, N.Y.
    25. Motamed, R., Towhata, I., Honda, T., Tabata, K., Abe, A. (2013) Pile group response to liquefaction–induced lateral spreading: E–Defense large shake table test, Soil Dynamics and Earthquake Engineering, 51, 36~46.
    26. O’Rourke, T. D., Meyersohn, W. D., Shiba, Y., and Chaudhuri, D. (1994). “Evaluation of pile response to liquefaction-induced lateral spread.” Proc.,5th U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction, NCEER 94-0026, National Center for Earthquake Engineering Research, Buffalo, N.Y., 457~480
    27. Poulos, H.G., and Davis,E.N., Pile Foundation Analysis and Design, John Wiley Sons, New York.(1980)
    28. RTRI (Railway Technical Research Institute), Design Standards for Railway Structures and Commentary (Substructures), Railway Technical Research Institute, Tokyo, Japan, 2012, (in Japanese).
    29. Yung-Yen Ko and Yu-Ying (2020), “A Comparison of Simplified Modelling Approaches for Performance Assessment of Piles Subjected to Lateral Spreading of Liquefied Ground,“
    30. Tokimatsu, K., Asaka, Y. (1998), “Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogoken-Nambu earthquake”, Soil and Foundations, 38, special issue, 163~177.

    無法下載圖示 校內:2026-08-25公開
    校外:2026-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE