| 研究生: |
林思仲 Lin, Zue-zon |
|---|---|
| 論文名稱: |
以黏著元素分析彈性層界面破壞 Analysis of Interfacial Fracture of Elastic Layers Using Cohesive Element |
| 指導教授: |
林育芸
Lin, Yu-yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 拉拔試驗 、破裂機制圖 、黏著元素 |
| 外文關鍵詞: | cohesive element, pull-off test, deformation map |
| 相關次數: | 點閱:67 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在拉拔試驗中,彈性層界面破裂模式決定於黏著特性、彈性層的體積性質與束制程度,其中束制程度定義為接觸半徑與彈性層厚度的比值。在本篇研究中,不可壓縮之彈性層與平面探頭的軸對稱有限元素拉拔模型將使用ABAQUS來模擬,而界面的黏著特性則使用黏著元素。我們將探討不同的束制程度以及黏著元素組成律對於黏著界面應力的分佈與破裂過程的影響。最後,我們將所有的數值結果放入破裂機制圖,其中破裂機制圖將依據Crosby等人[1]所提出的理論而得並將其理論中的黏著強度作修正。可發現當黏著元素組成律與彈性層束制程度已知的話,新的破裂機制圖將可精準的預測其破裂模式。
The mode of interfacial fracture of elastic layer in a pull-off test depends on adhesion, the bulk properties of the elastic layer, the degree of confinement, which is defined by the ratio of the contact radius to the thickness of the layer. In this research, an axisymmetric finite element model of pull-off test for an incompressible elastic layer adhesively bonded with a rigid flat probe was built using ABAQUS. The cohesive elements were used to characterize the adhesion between the elastic layer and the rigid flat probe. We studied numerically the stress distribution and failure process of interfacial fracture in pull-off test for different confinement ratio and different constitutive law of the cohesive elements. Finally, we concluded the types of failure mode of elastic layer in a deformation map according to our numerical results. The deformation map refers to Crosby et al [1] but was modified mainly by the adhesive strength. It shows that the new deformation map can precisely predict the failure mode when adhesion and confinement ratio of elastic layer are known.
[1] A. J. Crosby, K. R. Shull, H. Lakrout and C. Creton, “Deformation and Failure Modes of Adhesively Bonded Elastic Layers”, Journal of Applied Physics, Vol.88, No 5, pp.2956-2966 (2000).
[2] I. N. Sneddon, “ The Distribution of Stress in the Neighbourhood of a Crack in an Elastic Solid ”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.187, No. 1009, pp. 229-260 (1946).
[3] T. Mure, “Micromechanics of Defects in Solids” (Kluwer, Dordrecht, 1993)
[4] A. N. Gent and C. Wang, “Fracture Mechanics and Cavitation in Rubber-like Solids”, Journal of Materials Science, Vol.26, pp.3392-3395 (1991).
[5] Abaqus 6.8 Analysis User’s Manual
[6] T. Diehl, “On Using a Penalty-based Cohesive-zone Finite Element Approach, Part I: Elastic Solution Benchmarks”, International Journal of Adhesion & Adhesives, pp.1-19 (2007)
[7] J. F. Ganghoffer and A. N. Gent, “Adhesion of a Rigid Punch to a Thin Elastic Layer”, Journal of Adhesion, Vol.48, pp.75-84 (1995)
[8] R. E. Webber and K. R. Shull, “Effects of Geometric Confinement on the Adhesive Debonding of Soft Elastic Solids”, Physical Review, Vol.68, pp.021805-1-021805-11 (2003)