| 研究生: |
鄭凱任 Cheng, Kai-Jen |
|---|---|
| 論文名稱: |
個人化網路教學之研究 ─ 以認知型態與網路行為探勘為基礎 Personalized Hypermedia Learning Based on Cognitive Styles and Web Usage Mining |
| 指導教授: |
謝中奇
Hsieh, Chung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 網路行為探勘 、認知型態分析 、自動化推薦 、個人化網路教學 |
| 外文關鍵詞: | personalized hypermedia learning, cognitive styles analysis, web usage mining |
| 相關次數: | 點閱:124 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
網狀結構的內容編排是網路式教學的重要特性,學員未必一定得依照章節循序學習,使用網路式教學系統,學員可以依照自己的興趣與需求,任意地穿梭在各個主題之間的關聯與參考,大幅增加了學習過程的彈性。然而,這樣的學習方式在增加了靈活度的同時,也增加了複雜度、降低了結構性。依照學習者的認知型態,場所獨立類型的學生,分析能力較強,喜歡獨立思考與目標導向的學習方式;而場所依賴類型的學生,則偏好格式工整的教材內容,同時也較依賴來自同儕之間的互動與訊息。由此可提出以下合理假設:同樣的教學模式未必能在不同認知型態的學員之間收到相同的效果,讓學習過程自動順應不同的認知型態,才能提升整體的教學成效。
本研究試圖將認知型態概念納入網路式教學平台建構的考量,在低結構化的課程內容中,達到網路學習個人化的目的。以主修科學類課程的大學生作為實驗樣本,使用認知型態分析工具對其進行測驗後實際參與網路式教學。伺服器的存取記錄檔,儲存了這些受測者在學習過程的行為,從記錄檔內得以萃取出不同認知型態的行為模式與關聯式法則,使用這些法則能夠回饋日後的網路學習者,為個別學員提供推薦與引導連結,以及切合需求的學習工具,形成一套具備認知型態個人化的網路式教學系統。
One of the main features of hypermedia learning is that learners can explore through multiple topics at their own paces and preferences. However, not all types of learners feel comfortable with such learning approach. This is the result of learners having different cognitive styles which reflects learners' information processing habits. Therefore, students' cognitive styles should be a key factor in the development of a hypermedia learning system. In this research, we use Web Usage Mining techniques to analyze two different styles of user, behaviors, field dependent and field independent, from a hypermedia learning system. We present and experimentally examine two techniques, based on association rules and cluster centroids, to discover historical navigation patterns. These patterns enable the learning system to provide real-time recommendations for personalized hypermedia learning.
Andris, J. The relationship of indices of student navigational patterns in a hypermedia geology lab simulation to two measures of learning style. Journal of Educational Mutimedia and Hypermedia, 5(3), 303-315, 1996.
Baldi, P., Frasconi, P. and Smyth, P. Modeling the Internet and the Web: Probabilistic Methods and Algorithms. John Wiley and Sons, 2003.
Baylor, A. L. Perceived disorientation and incidental learning in a web-based environment: Internal and external factors. Journal of Educational Multimedia and Hypermedia, 10(3), 227-251, 2001.
Becerra-Fernandez, I., Gonzalez, A. and Sabherwal, R. Knowledge Management: Challenges, Solutions, and Technologies. Pearson Education, 2004. Catledge, L. D. and Pitkow, J. E. Characterizing browsing strategies in the world-wide web. Computer Networks and ISDN Systems, 27(6), 1065-1073, 1995.
Chen, S. Y. and Macredie, R. D. Cognitive styles and hypermedia navigation: development of a learning model. Journal of the American Society for Information Science and Technology, 53(1), 3-15, 2002.
Chen, S. Y. and Macredie, R. D. Cognitive modeling of student learning in web-based instructional programs. International Journal of Human-Computer Interaction,17(3), 375-402, 2004.
Chou, H. and Wang, T. The in°uence of learning style and training method on self-efficacy and learning performance in www homepage design training. International Journal of Information Management, 20, 455-472, 2000.
Chou, H. W. Influence of cognitive style and training method on training electiveness. Computers and Education, 37(1), 11-25, 2001.
Cooley, R., Mobasher, B. and Srivastava, J. Data preparation for mining World Wide Web browsing patterns. Knowledge and Information System, 1(1), 5-32, 1999.
Epstein, S. Handbook of Personality: Theory and Research. Guilford Press, 1990.
Epstein, S., Pacini, R., Denes-Raj, V. and Heier, H. Individual di®erences in intuitive-experiential and analytical-rational thinking styles. Journal of Personality and Social Psychology, 71(2), 390-405, 1996.
Fayyad, U., Shapiro, G. P. and Smyth, P. The kdd process for extracting useful knowledge from volumes of data. Communication of ACM, 39(11), 27-34, 1996.
Federico, P. Learning styles and student attitudes toward various aspects of network-based instruction. Computers in Human Behavior, 16, 359-379, 2000.
Ford, N. and Chen, S. Y. Matching/mismatching revisited: An empirical study of learning and teaching styles. British Journal of Educational Technology, 32(1), 5-22, 2001.
Huang, J. Z., Ng, M., Ching, W.-K., Ng, J. and Cheung, D. A cube model and cluster analysis for Web access sessions. WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points, San Francisco, CA, USA, 2001.
Joshi, K. P., Joshi, A. and Yesha, Y. On using a warehouse to analyze web logs. Distributed and Parallel Databases, 13(2), 161-180, 2003.
Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms. John Wiley and Sons, 2003.
Ke, H., Kwakkelaab, R., Taix, Y. and Chenc, L. Exploring behaviors of e-journal users in science and technology: Transaction log analysis of Elsevier's ScienceDirect OnSite in Taiwan. Library and Information Science Research, 24(3), 265-291, 2002.
Lee, C. H. M., Cheng, Y. W., Rai, S. and Depickere, A. What a®ect student cognitive style in the development of hypermedia learning system? Computers and Education, 45, 1-19, 2005.
Lin, B. and Hsieh, C.-T. Web-based teaching and learner control: A research review.Computers and Education, 37(3-4), 377-386, 2001.
Liu, M. and Reed, W. M. The e®ect of hypermedia assited instruction on second-language learning through a semantic-network-based approach. Journal of Educational Computing Research, 12(2), 159-175, 1995.
Mobasher, B., Cooley, R. and Srivastava, J. Automatic personalization based on Web usage mining. Communications of the ACM, 43(8), 142-151, 2000.
Mobasher, B., Dai, H. and Tao, M. Discovery and evaluation of aggregate usage profilesfor Web personalization. Data Mining and Knowledge Discovery, 6, 61-82, 2002.
Nanopoulos, A., Zakrzewicz, M., Morzy, T. and Manolopoulos, Y. Indexing web access-logs for pattern queries. Fourth ACM CIKM International Workshop on Web Information and Data Management, 2002.
Nasraoui, O., Gonzalez, F. and Dasgupta, D. The fuzzy arti¯cial immune system: Motivations, basic concepts, and application to clustering and Web profiling. Proceedings of the World Congress on Computational Intelligence (WCCI) and IEEE International Conference on Fuzzy Systems, 711-716, 2002.
Ng, W. and Gunstone, R. Students' perceptions of the electiveness of the world wideweb as a research and teaching tool in science learning. Research in Science Education, 32(4), 489-510, 2002.
Oughton, J. M. and Reed, W. M. The in°uence of individual di®erences on the construction of hypermedia concepts: A case study. Computers in Human Behavior, 11, 11-50, 1999.
Palmquist, R. A. and Kim, K. S. Cognitive style and online database search experience as predictors of web search performance. Journal of the American Society for Information Science, 51(6), 558-566, 2000.
Parkinson, A. and Redmond, J. A. 2002. Do cognitive styles affect learning performance in different computer media? In ITiCSE '02: Proceedings of the 7th annual conference on Innovation and technology in computer science education (p. 39-43). New York, NY, USA: ACM Press.
P.-N Tan, V. K. Discovery of Web robot sessions based on their navigation patterns. Data Mining and Knowledge Discovery, 6(1), 9-35, 2002.
Reed, W. M. and Oughton, J. M. Computer experience and interval-based hypermedia navigation. Journal of Research on Computing in Education, 30, 38-52, 1997.
Riding, R. Cognitive styles analysis. Birmingham: Learning and Training Technology, 1991.
Riding, R. and Rayner, S. G. Cognitive Styles and Learning Strategies: Understanding Style Di®erences in Learning and Behaviour. London: D. Fulton, 1998.
Robert Walker Cooley. 2000. Web usage mining: discovery and application of interesting patterns from Web data. Unpublished doctoral dissertation, University of Minnesota.
Stanton, N., Correia, A. P. and Dias, P. E±cacy of map on search, orientation and access behavior in a hypermedia system. Computers and Education, 35(4), 263-279, 2000.
Wang, F.-H. and Shao, H.-M. Effective personalized recommendation based on time-framed navigation clustering and association mining. Expert Systems with Applications, 27, 365-377, 2004.
Wang, P., Hawk, W. B. and Tenopir, C. Users' interaction with World Wide Web resources: An exploratory study using a holistic approach. Information Processing and Management, 36, 229-251, 2000.
Xie, Y. and Phoha, V. V. 2001. Web user clustering from access log using belief function. ACM Press.
Yang, Q., Li, T. and Wang, K. Building association-rule based sequential classifier for web-document prediction. Data Mining and Knowledge Discovery, 8, 253-273, 2004.
Zaiane, O. R. 2001. Web usage mining for a better web-based learning environment. In Proc. of conference on advanced technology for education (p. 60-64). Banff, Alberta.