| 研究生: |
梁世宏 Liang, Shih-Hung |
|---|---|
| 論文名稱: |
氧化鋅系列金絕半光檢測器與光激化學氣相沉積二氧化矽層金氧半場效電晶體之研製 The fabrication and study of ZnO-based MIS photodetectors and photo-CVD SiO2 layers MOSFETs |
| 指導教授: |
張守進
Chang, Shoou-Jinn 林建德 Lam, Kin-Tak |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 光檢測器 、場效電晶體 、氧化鋅 |
| 外文關鍵詞: | Photodectector, MOSFET, ZnO |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我的目標為製作及整合氧化鋅系列光電積體電路,因此我們對於氣化鋅系列光檢測器及場效電晶體將會有分別的討論。
首先在光檢測器的製作上,使用射頻電漿輔助分子磊晶系統在(0001)面的藍寶石基板成長氧化鋅薄膜,利用功函數高達5.15eV的鉑做為電極完成金半金光檢測器元件,再利用電漿增強化學氣相沈積法沈積一層5nm的二氧化矽,完成金半金、金絕半光檢測器元件製作。接著量測光/暗電流、光響應等特性,並分析其光暗電流對比率以及互斥比。在偏壓為5v時,金半金光檢測器和金絕半光檢測器的對比率為2.9×102和3.2×104,在波長為370nm時,響應度為0.089和0.0083A/W。亦發現互斥比分別為2.9×102和3.8×103。
在氧化鋅金氧半場效電晶體的製作上,先利用磁控電漿濺鍍沈積系統在(0001)面的藍寶石基板上成長氧化鋅,以達成之後所做的歐姆接觸、金絕半電容和金氧半場效電晶體之研究。在歐姆接觸方面,利用圓形傳輸線模型發現在鈦/鋁/鈦/金(200/600/200/500Å)在氮氣之下525oC、3分鐘回火之下的特徵電阻為5.29×10-4Ω-cm2。在二氧化矽方面,以光激化學氣相沈積法來成長高品質二氧化矽薄膜,並探討其化學特性,物理特性及電特性。以35nm厚的光激二氧化矽層來說,電容-電壓量測證實氧化鋅與二氧化矽間缺陷以及空乏區的存在。在氧化層的熱穩定度方面,發現在不同的回火溫度下,其物理及電特性均沒有明顯的變化,證實二氧化矽的熱穩定性相當良好。
最後把光激二氧化矽成功地應用在氧化鋅金氧半場效電晶體上,閘極漏電流將比金半場效電晶體降低近三個數量級(10-5A→10-2A),汲極電流、最大轉移電導及閘極操作平台分別為61.1mA/mm、 10.2mS/mm及2V。即是在高溫操作氧化鋅場效電晶體的最大轉移電導及汲極電流仍然有45.7mA/mm及 7.67mS/mm。
The main goal of this dissertation is the achievement of ZnO-based Optoelectronic Integrating Circuit (OEIC). Hence, the dissertation is divided into two parts, one is the discussion of ZnO-based metal-insulator-semiconductor(MIS) photodectors, and another is the discussion of Metal-Oxide-Semiconductor Field Effect Transsistors (MOSFETs).
In the discussion of photodetectors, We fabricated the ZnO-based metal-semiconductor-metal (MSM) photodetectors and metal-insulator-semiconductor (MIS). With 5 V applied bias, it was found that photocurrent to dark current contrast ratios of the ZnO MSM and MIS photodetectors were 2.9x102 and 3.2x104, respectively. It was also found that measured responsivities were 0.089 and 0.0083 A/W for the ZnO MSM and MIS photodetectors, respectively, when the incident light wavelength was 370 nm. Furthermore, it was found that UV to visible rejection ratios for the fabricated ZnO MSM and MIS photodetectors were 2.4x102 and 3.8x103, respectively.
In the discussion of FETs, We fabricated the ZnO-based metal-semiconductor-effect-transistor (MESFET) and metal-oxide-semiconductor-effect-transistor (MOSFET). On the part of ohmic contact, it was found that specific resistance of Ti/Al/Ti/Au (200/600/200/500Å) is 5.29×10-4Ω-cm2. On the part of SiO2 and MIS capacitors, the characteristics of photo-CVD SiO2 films were investigating by considering its physical and electrical properties. On the part of FETs, the ZnO MOSFETs are fabricated by using photo-CVD SiO2 as gate oxide. The maximum drain current (Id), maximum transconductance (gm) and gate voltage swing (GVS) of ZnO MOSFETs are estimated to be 61.1 mA/mm, 10.2 mS/mm and V, respectively at room temperature. Even at 150oC, the gm and Id of device still keep at 45.7 mA/mm and 7.67 mS/mm. Such a result indicated that the ZnO MOSFETs with photo-CVD SiO2 films is highly potential for application in hash environment.
Chapter 1
[1] Y. Irokawa, J. Kim, F. Ren, K. H. Baik, B. P. Gila, C. R. Abernathy, S. J. Pearton, C. C. Pan, G. T. Chen, and J. I. Chyi, Appl. Phys. Lett. 83, 4987 (2003).
[2] J. K. Sheu, M. L. Lee, L. S. Yeh, C. J. Kao, C. J. Tun, M. G. Chen, G. C. Chi, S. J.Chang, Y. K. Su, and C. T. Lee, Appl. Phys. Lett. 81, 4263 (2002).
[3]J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang, and Y. K. Su, IEEE Photon. Technol. Lett. 14, 450 (2002).
[4]J. C. Zolper, R. J. Shul, A. G. Baca, R. G. Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys. Lett. 68, 2273 (1996).
[5] J. K. Sheu and G. C. Chi, J. Phys. Condens. Matter 14, R657 (2002).
[6] S. J. Pearton, J. C. Zolper, R. J. Sheu, and F. Ren, J. Appl. Phys. 86, 1 (1999).
[7] J. K. Sheu, M. L. Lee, C. J. Tun, C. J. Kao, L. S. Yeh, S. J. Chang, and G. C. Chi, IEEE J. Select. Topics. Quantum Electron. 8, 767 (2002).
[8] J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang, and Y. K. Su, J. Appl. Phys. 91, 1845 (2002).
[9] C. F. Lin, C. H. Cheng, G. C. Chi, C. J. Bu, and M. S. Feng, Appl. Phys. Lett. 76, 1878 (2000).
[10] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
[11] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Appl. Phys.Lett. 73, 1038 (1998).
[12] D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).
[13] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
[14] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
[15] Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. Tang, G. Wong, and Y. Segawa, Mater. Sci. Eng. B 54, 24 (1998).
[16] C. J. Pan, C. W. Tu, J. J. Song, G. Cantwell, C. C. Lee, B. J. Pong, and G. C. Chi, Proc. SPIE 5722, 410 (2005).
[17] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997).
[18] K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, Sz. Fujita, and Sg. Fujita, Jpn. J. Appl. Phys., Part 2 40, L657 (2001).
[19] S. F. Chichibu, T. Yoshida, T. Onuma, and H. Nakanishi, J. Appl. Phys. 91, 874 (2002).
[20] Y. Chen, D. Bagnall, and T. Yao, Mater. Sci. Eng. B 75, 190 (2000).
[21] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol. B 22, 932 (2004).
[22] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
Chapter 2
[1] Z. X. Mei, X. L. Du, Y. Wang, Z. Q. Zeng, H. Zheng, J. F. Jia, Q. K. Xue and, Z. Zhang, “Controlled growth of Zn-polar ZnO epitaxial film by nitridation of sapphire substrate,” Appl. Phys. Lett. vol. 86,pp. 112111, 2005.
[2] Z. X. Mei, Y. Wang, X. L. Du, M. J. Ying, Z. Q. Zeng, H. Zheng, J. F. Jia, Q. K. Xue and Z. Zhang, “Controlled growth of O-polar ZnO epitaxial film by oxygen radical preconditioning of sapphire substrate,” J. Appl. Phys., vol. 96, pp. 7108-7111, 2004.
[3] Y. F. Chen, H. J. Ko, S. K. Hong and T. Yao, “Layer-by-layer growth of ZnO epilayer on Al2O3 (0001) by using a MgO buffer layer,” Appl. Phys. Lett., vol. 76, pp. 559-561, 2000.
[4] X. L. Du, M. Murakami, H. Iwaki, Y. Ishitani, and A. Yoshikawa, “Effects of Sapphire (0001) Surface Modification by Ga Pre-Exposure on the Growth of High-Quality Epitaxial ZnO Film,” Jpn. J. Appl. Phys., vol. 41, pp. L1043-L1045, 2002.
[5] R.K. Watts, “Planar Magnetron Sputtering,” in J.L. Vossen and W. Kern, eds., Thin Flim Processes, Academic, New York, 1978, pp. 131-174.
[6] C.Y. Chang and S.M. Sze, ULSI Technology, p380.
[7] J.L. Vossen, J.J. Cuomo, Thin Film Processes, p.24, 1978.
[8] S.I. Shah, Handbook of Thin Film Process Technology. P.A3.0:1.
[9] S.M. Sze, VLSI Technology, p387.
[10] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and Steven P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN“, Appl. Phys. Lett. 68, 1850 (1996)
[11] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, “Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator—semiconductor interfaces with low interface state density”, Appl. Phys. Lett. 73, 809 (1998)
[12] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee, and K. S. Chung, “GaN metal-oxide-semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation”, Appl. Phys. Lett. 80, 446 (2002)
[13] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride”, Appl.Phys. Lett. 76, 511 (2000)
[14] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and Steven P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN“, Appl. Phys. Lett. 68, 1850 (1996)
[15] C. J. Huang and Y. K. Su, “Effect of substrate temperature on the properties of SiO2/InP structure prepared by photochemical vapor deposition”, Journal of Applied Physical, 67, pp.3350 (1990)
[16] S. J. Chang, Y. K. Su, F. S. Juang, C. T. Lin, C. D. Chiang and Y. T. Cherng, IEEE J. Quantum Electron, 36, pp.583 (2000).
[17] C. T. Lin, Y. K. Su, S. J. Chang, H. T. Huang, S. M. Chang and T. P. Sun, IEEE Photo. Technol. Lett., 9, pp.232 (1997).
[18] C. T. Lin, Y. K. Su, H. T. Huang, S. J. Chang, G. S. Chen, T. P. Sun and J. J. 39 Luo, IEEE Photo. Technol. Lett., 8, pp.676 (1996).
[19] C. T. Lin, S. J. Chang, D. K. Nayak and Y. Shiraki, Jpn. J. Appl. Phys. 34, 72 (1995).
[20] Y. Tarui, J. Hidaka and K. Aota, “Low temperature growth of silicon
dioxide film by photo-chemical vapor deposition”, Jpn. J. Appl. Phys, L.827, pp.23 (1984)
[21] M. Okuyama, Y. Toyoda and Y. Hamakawa, “Photo-induced deuterium lamp”, Jpn. J. Appl. Phys., L97, pp.23 (1984)
[22] O. Itoh, Y. Toyoshima, H. Onuki, N. Washida and T. Ibuk, “Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6 and Si3H8”, J.Chem. Phys, 85, pp. 4876 (1986)
[23] H. Okabe, Photochemistry of small molecules, (John Wiely, New York)
Chapter 3
[1] M. Razeghi and A. Rogalski, J, Appl. Phys., vol. 79, pp. 7473-7044, 1996.
[2] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., vol. 13, pp. 848-850, 2001
[3] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M. A. Khan, J. Appl. Phys., vol. 83, pp. 2142-2146, 1998.
[4] S. J. Chang, T. K. Lin, Y. K. Su, Y. Z. Chiou, C. K. Wang, S. P. Chang, C. M. Chang, J. J. Tang and B.R. Huang, Materials Science and Engineering B., vol. 127, pp.164-168, 2006.
[5] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J. Appl. Phys., vol. 96, pp. 7036-7044, 2004.
[6] H. Kato, M. Sano, K. Miyanoto and T. Yao, Jpn. J. Appl. Phys., vol. 42, pp. L1002-L1005, 2003.
[7] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., vol. 83, pp. 4719-4721, 2003.
[8] S. J. Young, L. W. Ji, S. J. Chang and Y. K. Su, J. Crystal Growth, vol. 293, pp. 43-47, 2006.
[9] A. Mang, K. Reimann and St. Rübenacke, Solid State Commun., vol. 94, pp. 251-254, 1995.
[10] A. Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga and H. J. Ko, J. Appl. Phys., vol. 96, pp. 3763-3768, 2004.
[11] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, Appl. Physi. Lett., vol. 82, pp. 3901-3903, 2003.
[12] D. C. Reynolds, D. C. Look, B. Jogai, H. Morkoc, Solid State Commun., vol. 101, pp. 643-646, 1997.
[13] H. J. Ko, Y. F. Chen, S. K. Hong and T. Yao, J. Crystal Growth, vol. 209, pp. 816-821, 2000.
[14] R. P. Joshi, A. N. Dharamsi and J. McAdoo, Appl. Phys. Lett., vol. 64, pp. 3611-3613, 1994.
[15] E. Monroy, F. Calle, J. L. Pau, E. Munoz, F. Omnes, B. Beaumont and P. Gibart, Phys. Status Solidi A, vol. 185, pp. 91-97 (2001).
[16] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, J. Appl. Phys., vol. 83, pp. 6148-6160, 1998.
[17] F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, H. A. van Laarhoven and D. C. Look, Appl. Phys. Lett., vol. 79, pp. 3074-3076, 2001.
[18] A. Chini, J. Wittich, S. Heikman, S. Keller, S. P. DenBaars, U. K. Mishra, IEEE Electron Device Lett., vol. 25, pp. 55-57, 2004.
[19] S.M. Sze, “Physics of Semiconductor Devices, 2nd. Ed.”, Wiley, New York, 225 (1981).
[20] F.A. Padovani and R. Stratton, Solid-State Electron, Vol. 9, 695 (1966).
[21] C.R. Crowell and V.L. Rideout, Solid-State Electron, Vol. 12, 89 (1969).
[22] V.L. Rideout, Solid-State Electron, Vol. 18, 541 (1975).
Chapter 4
[1] S.M. Sze,Semiconductor devices Physics and Tecchnology, JOHN WILEY & SONS ,INC 2002.
[2] H. W. Jang, J. L. Lee , J. Appl. Phys. ,Vol 93 , p5416, 2003.
[3] T. Arai, H. Sueyoshi, Yasue Koide, Moriyama, Masanori Murakami, J. Appl. Phys. , Vol 89, p2826, 2001.
[4] S. J. Chang, C. J. Chang , Y. S. , R. W. Chuang , Y. C. Lin ,S. C. Shei , H.M. Lo , H. Y. Lin , J.C. Ke , IEEE Journal of Quantum Electronics , Vol 39,p1439, 2003.
[5] S. S. Cohen and G. Sh. Gildenblat, VLSI Electronics, 13, Metal-Semiconductor Contacts and Devices, Academic Press, Orlando, FL, 1986, pp.115.
[6] M. Ahmad and B.M. Arora, Silid-State Electron. 35, 1441-1445, Oct , 1992.
[7] K. Ip, G.T. Thaler, Journal of Crystal Growth, Volume 287, Issue 1, 18 January 2006, p149-156.
[8] Ip, K, Heo, YW, Baik, KH, Appl. Phys. Lett. 84 (4): 544-546 JAN 26 ,2004.
[9] J. H. Lee, Y. H. Lee and B. Farouk, J. Vac. Sci Technol. A 14, pp.2702 ,1996.
[10] S. C. Deshmukh and E. S. Aydil, J. Vac. Sci. Technol. B 14, pp.738 ,1996.
[11] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, New York, pp.96 ,1982.
[12] Chumbes E.M., Smart J.A., Prunty T., and Shealy J.R., IEEE T-Elec. Dev., Vol. 48, pp. 416–419 , 2001.
[13] R. Therrien, G. Lucovsky and R. Davis, Appl. Surf. Sci. 166 , 2000 513.
[14] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abernathy, Vol. 73, pp. 3893 , 1998.
[15] Lay T. S., Hong M., Kwo J., Mannaerts J.P., Hung W.H., and Huang D.J., Solid-State Electronics, Vol. 45, pp. 1679-1682 , 2001.
[16] J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R. Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo, Appl. Phys. Lett., Vol. 77, pp.3230 , 2000.
[17] Khan M.A., Hu X., Sumin G., Lunev A., Yang J., Gaska R., and Shur M.S., IEEE Elec. Dev. Lett., Vol. 21, pp. 63 –65 , 2000.
[18] Simin G., Hu X., Ilinskaya N., Zhang J., Tarakji A., Kumar A., Yang J., Asif Khan M., Gaska R., and Shur M.S., IEEE Elec. Dev. Lett., Vol. 22, pp. 53-55 , 2001.
[19] Simin G., Koudymov A., Fatima H., Jianping Zhang, Jinwei Yang, Asif Khan M., Hu X., Tarakji A., Gaska R., and Shur M.S., IEEE Elec. Dev. Lett., Vol. 23, pp. 458- 460 , 2002.
[20] Dei-Wei Chou, Kuan-Wei Lee, Jian-Jun Huang, Hou-Run Wu, Yeong-Her Wang, Mau-Phon Houng, Shoou-Jinn Chang, and Yan-Kuin Su, Jpn. J. Appl. Phys., Vol. 41, pp.L748-L750 , 2002.
[21] Sasa, S, Author, Reprint Author Sasa Shigehiko Sasa, Shigehiko , Ozaki, M, Appl. Phys. Lett. 89 5 31 , 2006.
[22] Nishii, J, Ohtomo, A, Ohtani, K, J. J. Appl. Phys.2 44 37-41, 2005.