簡易檢索 / 詳目顯示

研究生: 梁世宏
Liang, Shih-Hung
論文名稱: 氧化鋅系列金絕半光檢測器與光激化學氣相沉積二氧化矽層金氧半場效電晶體之研製
The fabrication and study of ZnO-based MIS photodetectors and photo-CVD SiO2 layers MOSFETs
指導教授: 張守進
Chang, Shoou-Jinn
林建德
Lam, Kin-Tak
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 96
中文關鍵詞: 光檢測器場效電晶體氧化鋅
外文關鍵詞: Photodectector, MOSFET, ZnO
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我的目標為製作及整合氧化鋅系列光電積體電路,因此我們對於氣化鋅系列光檢測器及場效電晶體將會有分別的討論。
    首先在光檢測器的製作上,使用射頻電漿輔助分子磊晶系統在(0001)面的藍寶石基板成長氧化鋅薄膜,利用功函數高達5.15eV的鉑做為電極完成金半金光檢測器元件,再利用電漿增強化學氣相沈積法沈積一層5nm的二氧化矽,完成金半金、金絕半光檢測器元件製作。接著量測光/暗電流、光響應等特性,並分析其光暗電流對比率以及互斥比。在偏壓為5v時,金半金光檢測器和金絕半光檢測器的對比率為2.9×102和3.2×104,在波長為370nm時,響應度為0.089和0.0083A/W。亦發現互斥比分別為2.9×102和3.8×103。
    在氧化鋅金氧半場效電晶體的製作上,先利用磁控電漿濺鍍沈積系統在(0001)面的藍寶石基板上成長氧化鋅,以達成之後所做的歐姆接觸、金絕半電容和金氧半場效電晶體之研究。在歐姆接觸方面,利用圓形傳輸線模型發現在鈦/鋁/鈦/金(200/600/200/500Å)在氮氣之下525oC、3分鐘回火之下的特徵電阻為5.29×10-4Ω-cm2。在二氧化矽方面,以光激化學氣相沈積法來成長高品質二氧化矽薄膜,並探討其化學特性,物理特性及電特性。以35nm厚的光激二氧化矽層來說,電容-電壓量測證實氧化鋅與二氧化矽間缺陷以及空乏區的存在。在氧化層的熱穩定度方面,發現在不同的回火溫度下,其物理及電特性均沒有明顯的變化,證實二氧化矽的熱穩定性相當良好。
    最後把光激二氧化矽成功地應用在氧化鋅金氧半場效電晶體上,閘極漏電流將比金半場效電晶體降低近三個數量級(10-5A→10-2A),汲極電流、最大轉移電導及閘極操作平台分別為61.1mA/mm、 10.2mS/mm及2V。即是在高溫操作氧化鋅場效電晶體的最大轉移電導及汲極電流仍然有45.7mA/mm及 7.67mS/mm。

    The main goal of this dissertation is the achievement of ZnO-based Optoelectronic Integrating Circuit (OEIC). Hence, the dissertation is divided into two parts, one is the discussion of ZnO-based metal-insulator-semiconductor(MIS) photodectors, and another is the discussion of Metal-Oxide-Semiconductor Field Effect Transsistors (MOSFETs).
    In the discussion of photodetectors, We fabricated the ZnO-based metal-semiconductor-metal (MSM) photodetectors and metal-insulator-semiconductor (MIS). With 5 V applied bias, it was found that photocurrent to dark current contrast ratios of the ZnO MSM and MIS photodetectors were 2.9x102 and 3.2x104, respectively. It was also found that measured responsivities were 0.089 and 0.0083 A/W for the ZnO MSM and MIS photodetectors, respectively, when the incident light wavelength was 370 nm. Furthermore, it was found that UV to visible rejection ratios for the fabricated ZnO MSM and MIS photodetectors were 2.4x102 and 3.8x103, respectively.
    In the discussion of FETs, We fabricated the ZnO-based metal-semiconductor-effect-transistor (MESFET) and metal-oxide-semiconductor-effect-transistor (MOSFET). On the part of ohmic contact, it was found that specific resistance of Ti/Al/Ti/Au (200/600/200/500Å) is 5.29×10-4Ω-cm2. On the part of SiO2 and MIS capacitors, the characteristics of photo-CVD SiO2 films were investigating by considering its physical and electrical properties. On the part of FETs, the ZnO MOSFETs are fabricated by using photo-CVD SiO2 as gate oxide. The maximum drain current (Id), maximum transconductance (gm) and gate voltage swing (GVS) of ZnO MOSFETs are estimated to be 61.1 mA/mm, 10.2 mS/mm and V, respectively at room temperature. Even at 150oC, the gm and Id of device still keep at 45.7 mA/mm and 7.67 mS/mm. Such a result indicated that the ZnO MOSFETs with photo-CVD SiO2 films is highly potential for application in hash environment.

    Abstract (in Chinese)----------------------------------------------------------Ⅰ Abstract (in English) -------------------------------------------------- -------Ⅲ Acknowledgement--------------------------------------------------------------Ⅴ Contents--------------------------------------------------------------------------Ⅵ Figures and Table Captions--------------------------------------------------IX Chapter 1 Introduction---------------------------------------------------------1 1-1. Background and Motivation------------------------------------------1 1-2. Organization of This Dissertation------------------------------------3 Chapter 2 Fabrication Systems and Measurement Systems------------7 2-1. Use the Molecular Beam Epitaxy(MBE) system to grow the ZnO film------------------------------------------------------------------7 2-2. Use the RF-Sputter system to grow the ZnO film----------------8 2-3. Chemical and physical characteristics of Photo-CVD SiO2 layer----------------------------------------------------------------------10 2-4. Direct Photo-CVD System-------------------------------------------10 2-5. FTIR System------------------------------------------------------------13 2-6. AFM System------------------------------------------------------------14 2-7. The Responsivity Measurement Systems and Other Measurement Systems------------------------------------------------15 Chapter 3 The Fabrication and Characterization of ZnO MIS Photocetectors-----------------------------------------------------25 3-1. Introduction-------------------------------------------------------------25 3-2. Current transport mechanisms -------------------------------------27 3-3. Fabrication of ZnO MIS photodetectors -------------------------27 3-4. The characteristics of ZnO MIS photodetectors----------------28 3-5. The Summary of ZnO MIS photodetectors ----------------------32 Chapter 4 ZnO MOS-FET Using Photo-SiO2 as Gate Oxide----------45 4-1. Ohmic contact of n-type ZnO---------------------------------------45 4-1-1. Introduction of Ohmic Contact Theory-------------------------45 4-1-2. Fabrication of CTLM pattern------------------------------------47 4-1-3. The characteristics of ZnO Specific Contact Resistance-----49 4-1-4. Microstructural analysis------------------------------------------51 4-2. Physical, Chemical and Deposited Characteristics of Photo-CVD SiO2 on ZnO--------------------------------------------52 4-2-1. The FTIR Spectrum of Photo-CVD SiO2 Films---------------52 4-2-2. The AFM Image of Photo-CVD SiO2 Surface-----------------52 4-2-3. The Thermal Stability of Photo SiO2----------------------------53 4-3. The Fabrication and Electrical Characteristics of ZnO MIS Capacitor with Photo-CVD SiO2-----------------------------------54 4-3-1. Introduction---------------------------------------------------------54 4-3-2. Fabrication of ZnO MIS Capacitors-----------------------------54 4-3-3. The C-V Characteristic of Ti/Al/Ti/Au/SiO2/ZnO MIS Capacitor------------------------------------------------------------55 4-4. The Fabrication and Characterization of ZnO MOSFET-----56 4-4-1. Introduction---------------------------------------------------------56 4-4-2. The Fabrication and Mask Design of ZnO FET---------------57 4-4-3. The Transfer Characteristics and Transconductance of ZnO FET-----------------------------------------------------------------59 4-5. The Summary of ZnO MOS-FET-----------------------------------64 Chapter 5 Conclusion and Future Work----------------------------------94 5-1. Conclusion --------------------------------------------------------------94 5-2. Future Work------------------------------------------------------------95 Figures and Table Captions Figure 1-1 Comparison of properties of ZnO with those of other wide bandgap semiconductors Figure 1-2 The organization of my research Figure 2-1 RF Sputtering system Figure 2-2 Momentum transfer will dislodge surface atoms off Figure 2-3 The schematic structures of photo-CVD system Figure 2-4 The radiant spectrum of deuterium light Figure 2-5 The absorption spectrum of O2 and O3 Figure 2-6 The Absorption Spectrum SiH4 and Si2H6 Figure 2-7 The FTIR instrument the illustration of the principle Figure 2-8 The AFM instrument the illustration of the principle Figure 2-9 The schematic structure of the responsivity measurement system Table 3-5 MSM and MIS characteristic Figure 3-1(a) Thermionic emission(TE) mechanism Figure 3-1(b) Thermionic-field emission(TFE) mechanism Figure 3-1(c) Field emission(FE) mechanism Figures 3-2(a) The schematic structure of the ZnO MSM photodector Figures 3-2(b) The schematic structure of the ZnO MIS photodector Figure 3-3 The SEM of the ZnO MIS photodector Figure 3-4 Room temperature PL spectrum of epitaxial ZnO films Figure 3-5 XRD spectrum of the epitaxial ZnO films prepared on sapphire substrate Figure 3-6 Compare to MSM and MIS photodectors photocurrent and darkcurrent Figure 3-7 MSM and MIS photodectors darkcurrent and photocurrent Table 3-1 MSM and MIS photodectors darkcurrent and photocurrent while bias at 5V Figure 3-8 MSM and MIS photodectors Photocurrent to Dark Current Contrast ratio Table 3-2 MSM and MIS photodectors Photocurrent to Dark Current Contrast ratio while bias at 1V and 5V Figure 3-9(a) MSM photodector Responsivity while bias at 1、3、5V Figure 3-9(b) MIS photodector Responsivity while bias at 1、3、5V Table 3-3 MSM and MIS photodectors λcutoff and Responsivity at 370nm while bias at 5V Figure 3-10 Compare to MSM and MIS photodectors Quantum Efficiency while bias at 5V Figure 3-11 MSM and MIS photodectors UV to visible rejection ratio Table3-4 MSM and MIS photodectors UV to visible rejection ratio while bias at 1、3、5V Figure 4-1 Test patterns for ohmic contact characterization: (a)rectangular pattern, (b) circular pattern Figure 4-2 The total resistance RT against contact spacing d (CTLM Ti/Al/Ti/Au anneal 525oC 3min in N2) Figures 4-3 The schematic structure of the ZnO Ohmic contact CTLM Figure 4-4 The actual CTLM pattern, the outer dot radius was 250μm and the spacing between the inner and the outer radii were varied from 10 to 60μm Figure 4-5 XRD spectrum of the epitaxial ZnO films prepared on sapphire substrate Figure 4-6 The I-V characteristics of the In(2000Å) CTLM pattern without annealing Figure 4-7 The I-V characteristics of the Ti/Al/Ti/Au(200/200/200/500Å) CTLM pattern without annealing Figure 4-8 The I-V characteristics of the In(2000Å) CTLM pattern (d=10μm) without annealing and with different annealing temperature under N2 atmosphere Figure 4-9 The I-V characteristics of the Ti/Al/Ti/Au(200/200/200/500Å) CTLM pattern (d=10μm) without annealing and with different annealing temperature under N2 atmosphere Figure 4-10 The I-V characteristics of the Ti/Al/Ti/Au(200/600/200/500Å) CTLM pattern (d=10μm) without annealing and with different annealing temperature under N2 atmosphere Figure 4-11 The I-V characteristics of the Ti/Al/Ti/Au(200/600/200/500Å) CTLM pattern with 525°C 3min annealing under N2 atmosphere Figure 4-12(a) The AES depth profile of Ti/Al/Ti/Au(200/600/200/500Å) on ZnO at as deposited Figure 4-12(b) The AES depth profile of Ti/Al/Ti/Au(200/600/200/500Å) on ZnO with 450°C 3min annealing under N2 atmosphere Figure 4-12(c) The AES depth profile of Ti/Al/Ti/Au(200/600/200/500Å) on ZnO with 525°C 3min annealing under N2 atmosphere Figure 4-12(d) The AES depth profile of Ti/Al/Ti/Au(200/600/200/500Å) on ZnO with 550°C 3min annealing under N2 atmosphere Figure 4-13 The transmission mode FTIR analysis of photo-SiO2 Figure 4-14(a) Atomic Force Microscope of Bare ZnO Figure 4-14(b) Atomic Force Microscope of 1hr photo-SiO2/ZnO Figure 4-14(c) Atomic Force Microscope of 2hr photo-SiO2/ZnO Table 4-1 Atomic Force Microscope of Bare ZnO、1hr and 2hr photo-SiO2 Figure 4-15 The refractive index and thickness versus annealing temperature Table 4-2 photo-SiO2 Thermal stability analysis Figures 4-16 The schematic structure of the ZnO MIS Capacitor Figure 4-17 C-V characteristics of ZnO MIS capacitors measured at room temperature Figures 4-18(a) The schematic structure of the ZnO MES-FET Figures 4-18(b) The schematic structure of the ZnO MOS-FET Figure 4-19(a) The Source/Drain mask for DC-FET Figure 4-19(b) The gate mask for DC-FET Figure 4-20(a) The actual pattern for DC-FET device(L=2μm, W=80μm) Figure 4-20(a)The actual pattern for DC-FET device(L=2μm, W=140μm) Figure 4-21(a) Sample A. Ids-Vds characteristics for MESFET with L=2μm, W=140μm Figure 4-21(b) Sample A. Ids-Vds characteristics for MOSFET with L=2μm, W=140μm Figure 4-22(a) Sample B. Ids-Vds characteristics for MESFET with L=2μm, W=140μm Figure 4-22(b) Sample B. Ids-Vds characteristics for MOSFET with L=2μm, W=140μm Figure 4-23 (a) Sample C. Ids-Vds characteristics for MESFET with L=2μm, W=140μm Figure 4-23 (b) Sample C. Ids-Vds characteristics for MOSFET with L=2μm, W=140μm Figure 4-24 Measured gate leakage current as a function of reverse gate bias for MESFET and MOSFET Figure 4-25(a) Ids-Vds characteristics for Sample A.MESFET with L=2μm, W=140μm Figure 4-25(b) Ids-Vds characteristics for Sample B.MESFET with L=2μm m, W=140μ Figure 4-25(c) Ids-Vds characteristics for Sample C.MESFET with L=2μm, W=140μm Figure 4-26(a) Ids-Vds characteristics for Sample A.MOSFET with L=2μm, W=140μm Figure 4-26(b) Ids-Vds characteristics for Sample B.MOSFET with L=2μm, W=140μm Figure 4-26 (c) Ids-Vds characteristics for Sample C.MOSFET with L=2μm, W=140μm Figure 4-27(a) Sample C. Ids-Vds before normalize characteristics for MOSFET with L=2μm, W=80μm Figure 4-27(b) Sample C. Ids-Vds after normalize characteristics for MOSFET with L=2μm, W=80μm Figure 4-27(c) Sample C. Ids-Vds before normalize characteristics for MOSFET with L=2μm, W=140μm Figure 4-27(d) Sample C. Ids-Vds before normalize characteristics for MOSFET with L=2μm, W=140μm Figure 4-28 Sample C. Ids-Vds characteristics for MOSFET with L=2μm, W=140μm at elevated temperature 150°C Figure 4-29 Sample C.Ids and Gm as functions of Vg for MOSFET with L=2μm, W=140μm at as deposition and elevated temperature 150°C

    Chapter 1
    [1] Y. Irokawa, J. Kim, F. Ren, K. H. Baik, B. P. Gila, C. R. Abernathy, S. J. Pearton, C. C. Pan, G. T. Chen, and J. I. Chyi, Appl. Phys. Lett. 83, 4987 (2003).
    [2] J. K. Sheu, M. L. Lee, L. S. Yeh, C. J. Kao, C. J. Tun, M. G. Chen, G. C. Chi, S. J.Chang, Y. K. Su, and C. T. Lee, Appl. Phys. Lett. 81, 4263 (2002).
    [3]J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang, and Y. K. Su, IEEE Photon. Technol. Lett. 14, 450 (2002).
    [4]J. C. Zolper, R. J. Shul, A. G. Baca, R. G. Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys. Lett. 68, 2273 (1996).
    [5] J. K. Sheu and G. C. Chi, J. Phys. Condens. Matter 14, R657 (2002).
    [6] S. J. Pearton, J. C. Zolper, R. J. Sheu, and F. Ren, J. Appl. Phys. 86, 1 (1999).
    [7] J. K. Sheu, M. L. Lee, C. J. Tun, C. J. Kao, L. S. Yeh, S. J. Chang, and G. C. Chi, IEEE J. Select. Topics. Quantum Electron. 8, 767 (2002).
    [8] J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang, and Y. K. Su, J. Appl. Phys. 91, 1845 (2002).
    [9] C. F. Lin, C. H. Cheng, G. C. Chi, C. J. Bu, and M. S. Feng, Appl. Phys. Lett. 76, 1878 (2000).
    [10] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
    [11] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Appl. Phys.Lett. 73, 1038 (1998).
    [12] D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).
    [13] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
    [14] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
    [15] Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. Tang, G. Wong, and Y. Segawa, Mater. Sci. Eng. B 54, 24 (1998).
    [16] C. J. Pan, C. W. Tu, J. J. Song, G. Cantwell, C. C. Lee, B. J. Pong, and G. C. Chi, Proc. SPIE 5722, 410 (2005).
    [17] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997).
    [18] K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, Sz. Fujita, and Sg. Fujita, Jpn. J. Appl. Phys., Part 2 40, L657 (2001).
    [19] S. F. Chichibu, T. Yoshida, T. Onuma, and H. Nakanishi, J. Appl. Phys. 91, 874 (2002).
    [20] Y. Chen, D. Bagnall, and T. Yao, Mater. Sci. Eng. B 75, 190 (2000).
    [21] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol. B 22, 932 (2004).
    [22] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).

    Chapter 2
    [1] Z. X. Mei, X. L. Du, Y. Wang, Z. Q. Zeng, H. Zheng, J. F. Jia, Q. K. Xue and, Z. Zhang, “Controlled growth of Zn-polar ZnO epitaxial film by nitridation of sapphire substrate,” Appl. Phys. Lett. vol. 86,pp. 112111, 2005.
    [2] Z. X. Mei, Y. Wang, X. L. Du, M. J. Ying, Z. Q. Zeng, H. Zheng, J. F. Jia, Q. K. Xue and Z. Zhang, “Controlled growth of O-polar ZnO epitaxial film by oxygen radical preconditioning of sapphire substrate,” J. Appl. Phys., vol. 96, pp. 7108-7111, 2004.
    [3] Y. F. Chen, H. J. Ko, S. K. Hong and T. Yao, “Layer-by-layer growth of ZnO epilayer on Al2O3 (0001) by using a MgO buffer layer,” Appl. Phys. Lett., vol. 76, pp. 559-561, 2000.
    [4] X. L. Du, M. Murakami, H. Iwaki, Y. Ishitani, and A. Yoshikawa, “Effects of Sapphire (0001) Surface Modification by Ga Pre-Exposure on the Growth of High-Quality Epitaxial ZnO Film,” Jpn. J. Appl. Phys., vol. 41, pp. L1043-L1045, 2002.
    [5] R.K. Watts, “Planar Magnetron Sputtering,” in J.L. Vossen and W. Kern, eds., Thin Flim Processes, Academic, New York, 1978, pp. 131-174.
    [6] C.Y. Chang and S.M. Sze, ULSI Technology, p380.
    [7] J.L. Vossen, J.J. Cuomo, Thin Film Processes, p.24, 1978.
    [8] S.I. Shah, Handbook of Thin Film Process Technology. P.A3.0:1.
    [9] S.M. Sze, VLSI Technology, p387.
    [10] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and Steven P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN“, Appl. Phys. Lett. 68, 1850 (1996)
    [11] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, “Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator—semiconductor interfaces with low interface state density”, Appl. Phys. Lett. 73, 809 (1998)
    [12] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee, and K. S. Chung, “GaN metal-oxide-semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation”, Appl. Phys. Lett. 80, 446 (2002)
    [13] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride”, Appl.Phys. Lett. 76, 511 (2000)
    [14] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and Steven P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN“, Appl. Phys. Lett. 68, 1850 (1996)
    [15] C. J. Huang and Y. K. Su, “Effect of substrate temperature on the properties of SiO2/InP structure prepared by photochemical vapor deposition”, Journal of Applied Physical, 67, pp.3350 (1990)
    [16] S. J. Chang, Y. K. Su, F. S. Juang, C. T. Lin, C. D. Chiang and Y. T. Cherng, IEEE J. Quantum Electron, 36, pp.583 (2000).
    [17] C. T. Lin, Y. K. Su, S. J. Chang, H. T. Huang, S. M. Chang and T. P. Sun, IEEE Photo. Technol. Lett., 9, pp.232 (1997).
    [18] C. T. Lin, Y. K. Su, H. T. Huang, S. J. Chang, G. S. Chen, T. P. Sun and J. J. 39 Luo, IEEE Photo. Technol. Lett., 8, pp.676 (1996).
    [19] C. T. Lin, S. J. Chang, D. K. Nayak and Y. Shiraki, Jpn. J. Appl. Phys. 34, 72 (1995).
    [20] Y. Tarui, J. Hidaka and K. Aota, “Low temperature growth of silicon
    dioxide film by photo-chemical vapor deposition”, Jpn. J. Appl. Phys, L.827, pp.23 (1984)
    [21] M. Okuyama, Y. Toyoda and Y. Hamakawa, “Photo-induced deuterium lamp”, Jpn. J. Appl. Phys., L97, pp.23 (1984)
    [22] O. Itoh, Y. Toyoshima, H. Onuki, N. Washida and T. Ibuk, “Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6 and Si3H8”, J.Chem. Phys, 85, pp. 4876 (1986)
    [23] H. Okabe, Photochemistry of small molecules, (John Wiely, New York)

    Chapter 3
    [1] M. Razeghi and A. Rogalski, J, Appl. Phys., vol. 79, pp. 7473-7044, 1996.
    [2] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., vol. 13, pp. 848-850, 2001
    [3] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M. A. Khan, J. Appl. Phys., vol. 83, pp. 2142-2146, 1998.
    [4] S. J. Chang, T. K. Lin, Y. K. Su, Y. Z. Chiou, C. K. Wang, S. P. Chang, C. M. Chang, J. J. Tang and B.R. Huang, Materials Science and Engineering B., vol. 127, pp.164-168, 2006.
    [5] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J. Appl. Phys., vol. 96, pp. 7036-7044, 2004.
    [6] H. Kato, M. Sano, K. Miyanoto and T. Yao, Jpn. J. Appl. Phys., vol. 42, pp. L1002-L1005, 2003.
    [7] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., vol. 83, pp. 4719-4721, 2003.
    [8] S. J. Young, L. W. Ji, S. J. Chang and Y. K. Su, J. Crystal Growth, vol. 293, pp. 43-47, 2006.
    [9] A. Mang, K. Reimann and St. Rübenacke, Solid State Commun., vol. 94, pp. 251-254, 1995.
    [10] A. Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga and H. J. Ko, J. Appl. Phys., vol. 96, pp. 3763-3768, 2004.
    [11] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, Appl. Physi. Lett., vol. 82, pp. 3901-3903, 2003.
    [12] D. C. Reynolds, D. C. Look, B. Jogai, H. Morkoc, Solid State Commun., vol. 101, pp. 643-646, 1997.
    [13] H. J. Ko, Y. F. Chen, S. K. Hong and T. Yao, J. Crystal Growth, vol. 209, pp. 816-821, 2000.
    [14] R. P. Joshi, A. N. Dharamsi and J. McAdoo, Appl. Phys. Lett., vol. 64, pp. 3611-3613, 1994.
    [15] E. Monroy, F. Calle, J. L. Pau, E. Munoz, F. Omnes, B. Beaumont and P. Gibart, Phys. Status Solidi A, vol. 185, pp. 91-97 (2001).
    [16] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, J. Appl. Phys., vol. 83, pp. 6148-6160, 1998.
    [17] F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, H. A. van Laarhoven and D. C. Look, Appl. Phys. Lett., vol. 79, pp. 3074-3076, 2001.
    [18] A. Chini, J. Wittich, S. Heikman, S. Keller, S. P. DenBaars, U. K. Mishra, IEEE Electron Device Lett., vol. 25, pp. 55-57, 2004.
    [19] S.M. Sze, “Physics of Semiconductor Devices, 2nd. Ed.”, Wiley, New York, 225 (1981).
    [20] F.A. Padovani and R. Stratton, Solid-State Electron, Vol. 9, 695 (1966).
    [21] C.R. Crowell and V.L. Rideout, Solid-State Electron, Vol. 12, 89 (1969).
    [22] V.L. Rideout, Solid-State Electron, Vol. 18, 541 (1975).

    Chapter 4
    [1] S.M. Sze,Semiconductor devices Physics and Tecchnology, JOHN WILEY & SONS ,INC 2002.
    [2] H. W. Jang, J. L. Lee , J. Appl. Phys. ,Vol 93 , p5416, 2003.
    [3] T. Arai, H. Sueyoshi, Yasue Koide, Moriyama, Masanori Murakami, J. Appl. Phys. , Vol 89, p2826, 2001.
    [4] S. J. Chang, C. J. Chang , Y. S. , R. W. Chuang , Y. C. Lin ,S. C. Shei , H.M. Lo , H. Y. Lin , J.C. Ke , IEEE Journal of Quantum Electronics , Vol 39,p1439, 2003.
    [5] S. S. Cohen and G. Sh. Gildenblat, VLSI Electronics, 13, Metal-Semiconductor Contacts and Devices, Academic Press, Orlando, FL, 1986, pp.115.
    [6] M. Ahmad and B.M. Arora, Silid-State Electron. 35, 1441-1445, Oct , 1992.
    [7] K. Ip, G.T. Thaler, Journal of Crystal Growth, Volume 287, Issue 1, 18 January 2006, p149-156.
    [8] Ip, K, Heo, YW, Baik, KH, Appl. Phys. Lett. 84 (4): 544-546 JAN 26 ,2004.
    [9] J. H. Lee, Y. H. Lee and B. Farouk, J. Vac. Sci Technol. A 14, pp.2702 ,1996.
    [10] S. C. Deshmukh and E. S. Aydil, J. Vac. Sci. Technol. B 14, pp.738 ,1996.
    [11] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, New York, pp.96 ,1982.
    [12] Chumbes E.M., Smart J.A., Prunty T., and Shealy J.R., IEEE T-Elec. Dev., Vol. 48, pp. 416–419 , 2001.
    [13] R. Therrien, G. Lucovsky and R. Davis, Appl. Surf. Sci. 166 , 2000 513.
    [14] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abernathy, Vol. 73, pp. 3893 , 1998.
    [15] Lay T. S., Hong M., Kwo J., Mannaerts J.P., Hung W.H., and Huang D.J., Solid-State Electronics, Vol. 45, pp. 1679-1682 , 2001.
    [16] J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R. Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo, Appl. Phys. Lett., Vol. 77, pp.3230 , 2000.
    [17] Khan M.A., Hu X., Sumin G., Lunev A., Yang J., Gaska R., and Shur M.S., IEEE Elec. Dev. Lett., Vol. 21, pp. 63 –65 , 2000.
    [18] Simin G., Hu X., Ilinskaya N., Zhang J., Tarakji A., Kumar A., Yang J., Asif Khan M., Gaska R., and Shur M.S., IEEE Elec. Dev. Lett., Vol. 22, pp. 53-55 , 2001.
    [19] Simin G., Koudymov A., Fatima H., Jianping Zhang, Jinwei Yang, Asif Khan M., Hu X., Tarakji A., Gaska R., and Shur M.S., IEEE Elec. Dev. Lett., Vol. 23, pp. 458- 460 , 2002.
    [20] Dei-Wei Chou, Kuan-Wei Lee, Jian-Jun Huang, Hou-Run Wu, Yeong-Her Wang, Mau-Phon Houng, Shoou-Jinn Chang, and Yan-Kuin Su, Jpn. J. Appl. Phys., Vol. 41, pp.L748-L750 , 2002.
    [21] Sasa, S, Author, Reprint Author Sasa Shigehiko Sasa, Shigehiko , Ozaki, M, Appl. Phys. Lett. 89 5 31 , 2006.
    [22] Nishii, J, Ohtomo, A, Ohtani, K, J. J. Appl. Phys.2 44 37-41, 2005.

    下載圖示 校內:2012-06-27公開
    校外:2017-06-27公開
    QR CODE