| 研究生: |
莊博凱 Chuang, Po-kai |
|---|---|
| 論文名稱: |
塗佈鈣磷化合物及膠原蛋白複合薄層之鈦合金的人類類骨細胞親和性 HOS Cyto-compatibility of Titanium Alloy Coated with Ca-P Compound and Collagen Films |
| 指導教授: |
李澤民
Lee, Tze Ming 王清正 Wang, Ching-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 鈦六鋁四釩合金 、鈣磷化合物 、型一膠原蛋白 、複合塗層 、細胞親和性 |
| 外文關鍵詞: | compound coating, type I collagen, Ca-P compound, Ti-6Al-4V alloy, cyto-compatibility |
| 相關次數: | 點閱:115 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
塗佈基材表面會改變其細胞親和性,本論文將三種塗層塗佈於鈦六鋁四釩合金表面,分別為鈣磷化合物、型一膠原蛋白及兩者之複合塗層,並評估鈦六鋁四釩合金之人類類骨細胞親和性。實驗分為四個組別,分別命名為Ti-6Al-4V、Ca-P、Collagen、Ca-P/Collagen,在塗佈試片表面之前,鈦六鋁四釩合金表面皆先進行矽砂紙的溼式研磨及氧化鋁粉的拋光程序,得到平滑的表面。Ti-6Al-4V組別不進行任何的表面塗佈程序;Ca-P組別利用浸泡模擬人體體液(simulated body fluid;SBF)的方式,於試片表面進行鈣磷化合物的塗佈;Collagen組別於試片表面進行型一膠原蛋白(type I collagen from calf skin)的塗佈;Ca-P/Collagen組別則於試片表面塗佈鈣磷化合物及型一膠原蛋白之複合塗層。在各組別試片之表面上培養人類類骨細胞(human osteosarcoma;HOS),進行細胞增殖分析以及細胞型態的觀察。細胞的新陳代謝越活躍,MTT (Methylthiazoletetrazolium)被消耗的量越多,產生的沉澱物(formazan crystal)也越多,於試片表面培養HOS細胞1、5、10天後,利用酵素免疫分析測讀儀(ELISA reader)判讀吸光度,分析細胞增殖的趨勢;於試片表面培養HOS細胞1、3、12及24小時,使用掃描式電子顯微鏡(scanning electron microscopy;SEM)觀察細胞貼附型態。透過本論文的實驗結果,比較各組別中細胞增殖的情形,發現型一膠原蛋白塗層最能助長HOS細胞的增殖,而鈣磷化合物塗層對於HOS細胞的增殖則有負面的影響;而細胞初期黏附型態方面,Collagen組別細胞的貼附最為平坦,Ca-P組別則效果最差,發現型一膠原蛋白能促進HOS細胞的初期黏附情形。
Surface modification of the substrate affects it’s cyto-compatibility. We have evaluated the HOS cytocompatibility of Ti-6Al-4V alloy after coated with Ca-P compound, type I collagen, and compound coating of both on the surface respectively. Experiment was divided into four groups, called Ti-6Al-4V, Ca-P, Collagen, Ca-P/Collagen, respectively. Before surface modification, surface of Ti-6Al-4V alloy became smooth after abrading with sandpapers and polishing with Al2O3. For Ti-6Al-4V group, sample surface coated with nothing. For Ca-P group, sample surface coated with Ca-P compound by biomimetic immersion ( simulated body fluid ; SBF ). For Collagen group, sample surface coated with type I collagen ( from calf skin ). For Ca-P/Collagen group, sample surface coated with Ca-P compound and type I collagen. After human osteosarcoma ( HOS ) cells were cultured in each groups, we evaluated cell proliferation and observed cell morphology. When cell metabolism was more active, more Methylthiazoletetrazolium ( MTT ) was wasted and more formazan crystal was appeared. After cultured for 1, 5 and 10 days, we assayed proliferation of HOS cells by ELISA reader. Cells were cultured for 1, 3, 12 and 24 hours, we observed cell morphology on sample surface by scanning electron microscopy ( SEM ). Results of experiment, we found that type I collagen was the best factor and Ca-P compound was the worst factor to enhance cell proliferation. For cell
morphology, type I collagen could help to flatten HOS cells sample surface.
[1] P. F. Gonzalez, and M.. Santos, “On the Hydroxyl Ions in Apatites.”
J. Solid State Chem, vol. 22, pp. 193-199, 1977.
[2] C. B Mao, H. D. Li., F. H. Cui, C. L. Ma, and O. L. Feng, “Oriented
growth of phosphates on polycrystalline titanium in a process
mimicking biomineralization,” J Crystal Growth, vol. 206, pp.
308-321, 1999.
[3] R. Rohanizadeh, M. Al-Sadeq, and R. Z. LeGeros, “Preparation of
different forms of titanium oxide on titanium surface: Effects on
apatite deposition,” J Biomed Mater Res, vol. 71, pp. 343-352, 2004.
[4] M. Uchida, H. M. Kim, T. Kokubo, S. Fujibayashi, and T. Nakamura,
“Structural dependence of apatite formation on titania gels in a
simulated body fluid,” J Biomed Mater Res, vol. 64A, pp. 164-170,
2003.
[5] J. M. Wu, H. Satoshi, T. Kanji, and O. Akiyoshi, “In vitro bioactivity
of anatase film obtained by direct deposition from aqueous titanium
tetrafluoride solutions,” Thin Solid Films, vol. 414,pp. 275-280,
2002.
[6] J. C. Brodie, E. Goldie, G. Connel, J. Merry, M. H. Grant, “Osteoblast
interactions with calcium phosphate ceramics modified by coating
with type I collagen,” J Biomed Mater Res, vol. 73A, pp. 409-421,
2005.
[7] T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, R. Bizios,
“Specific proteins mediate enhanced osteoblast adhesion on
nanophase ceramics,” J Biomed Mater Res, vol. 51, pp. 475-483,
2000.
[8] X. Zhu, O. Eibl, L. Scheideler, J. Geis-Gerstorfer, “Characterization
of nano hydroxyapatite/collagen surfaces and cellular behaviors,” J
Biomed Mater Res, vol. 79A, pp. 114-127, 2006.
[9] T. Kausga, H. Kondo, and M. Nogimi, “Apatite formation on TiO2 in
simulated body fluid,” J Cryst Growth, vol. 235, pp. 235-240, 2002.
[10] L. Jonasova, F. A. Mullar, A. Helebrant, J. Strnad, and P. Greil, “Biomimetic apatite formation on chemically treated titanium,”
Biomaterials, vol. 25, pp. 1187-1194, 2004.
[11] J. M. Manero, J. Salsench, J. Nogueras, C. Aparicio, A. Padrós, M. Balcells, F. J. Gil, J. A. Planell, “Growth of Bioactive Surfaces on Dental Implants.” Implant Dent, vol. 11, pp. 170-175, 2002.
[12] A. Bigi, E. Boanini, B. Bracci, A. Facchini, S. Panzavolta, F. Segatti, L. Sturba, “Nanocrystalline hydroxyapatite coatings on titanium:a new fast biomimetic method.” Biomaterials, vol. 26, pp. 4085-4089, 2005.
[13] F. Li, Q. L. Feng, F. Z. Cui, H. D. Li, and H. Schubert, “A simple biomimetic method for calcium phosphate coating.” Surface and Coatings Technology, vol. 154, pp. 88-93, 2005.
[14] H. M. Kim, Y. Kim, S. J. Park, C. Rey, H. M. Lee, M. J. Glimcher, and J. S. Ko, “Thin film of low-crystalline calcium phosphate apatite formed at low temperature,” Biomaterials, vol. 21, pp. 1129-1134, 2000.
[15] E. Leitao, M. A. Barbosa, and K. D. Groot, “In vitro calcification of orthopaedic implant materials,” J. Mater. Sci Mater. in Medicine,vol. 6, pp. 849-852, 1995.
[16] H. B. Wen, J. R. D. Wijn, C. A. V. Blitterswijk, and K. D. Groot, “Incorporation of bovine serum albumin in calcium phosphate coating on titanium,” J Biomed Mater Res, vol. 46, pp. 245-252, 1999.
[17] A. A. Campbell, G. E. Fryxell , J. C. Linehan, and G. L. Graff, “Surface-induced mineralization: A new method for producing calcium phosphate coatings,” J. Biomed. Mater. Res, vol. 32, pp. 111–118, 1996.
[18] W. L. Jaffe, and D. F. Scott, “Total hip arthroplasty with hydroxyapatite-coated prostheses,” J Bone Joint Surg, vol. 78A, pp. 1918-1934, 1996.
[19] M. Sato, E. B. Slamovich, and T. J. Webster, “Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly (lactide-co-glycolide)sol–gel titanium coatings,” Biomaterials, vol. 26, pp. 1349-1357, 2005.
[20] F. H. Lin, Y. S. Hsu, S. H. Lin, and T. M. Chen, “The growth of hydroxyapatite on alkaline treated Ti–6Al–4V soaking in higher temperature with concentrated Ca2+/HPO4 2− simulated body fluid,” Mater Chem. Phys, vol. 87, pp. 24-30, 2004.
[21] 國立成功大學,碩士論文:藉由仿生浸泡法在體外鍍製氫氧基磷灰石趨勢之探討,製造工程研究所,崔廣宇。
[22] B. Florence, M. E. S. Margot, A. Clemens, V. Blitterswijk, D. G. Klaas, and L. Pierre, “Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants,” Biomaterials, vol. 25, pp. 2901-2910, 2004.
[23] I. K. Jun, J. H. Jang, H. W. Kim, H. E. Kim, “Recombinant osteopontin fragment coating on hydroxyapatite for enhanced osteoblast-like cell responses,” Journal of Materials Science, vol, 40, pp. 2891-2895, 2005.
[24] H. B. Wen, J. R. D. Wijn, F. Z. Cui, and K. D. Groo, “Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry,” J Biomed Mater Res, vol.41, pp. 227-236, 1998.
[25] Lim JY, Hansen CJ, Siedlecki CA, Runt J, Donahue HJ. “Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces,” J.R.Soc. Interface, vol. 2, pp. 97-108, 2004.
[26] X. Lu, Y. Leng, X. Zhang, J. Xu, L. Qin, and C. W. Chan, “Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo,” Biomaterials, vol. 26, pp. 1793-1801, 2005.
[27] 國立成功大學,碩士論文:鈦合金奈米級表面粗糙差異對表面性質及細胞初期生長的影響,製造工程研究所,謝明哲。
[28] T. M. Lee, E. Chang, and C.Y. Yang, “Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the alloy,” Biomaterials, vol. 25, pp. 23-32, 2004.
[29] K. D. Groot, J. G. C. Wolke, and J. A. Jansen, “Calcium phosphate coatings for medical implants,” Proc Instn Mech Engrs, vol. 212, pp. 137-149, 1998.
[30] Y.-K. Liu, T. Uemura, A. Nemoto, T. Yabe, N. Fujii, T. Ushida, T. Tateishi, “Osteopontin involvement in integrin-mediated cell signaling and regulation of expression of alkaline phosphatase during early differentiation of UMR cells,” FEBS Lett, vol. 420, pp. 112–116, 1997.
[31] T. Yoshikawa, H. Ohgushi, M. Okumura, S. Tamai, Y. Dohi, T. Moriyama, “Biochemical and histological sequences of membranous ossification in ectopic site,” Calcif. Tissue Int, vol. 50, pp. 184–188, 1992.
[32] H. Sakaguchi., J. Fujimoto., B. L. Hong., T. Tamava., “Clinical implications of osteopontin in metastatic lesions of uterine cervical cancers,” Cancer Letters, vol. 247, pp. 98–102, 2007.
[33] Toshimasa Uemura, Atsuko Nemoto, Yin-Kun Liu, Hiroko Kojima, Jian Dong, Tomoko Yabe, Takafumi Yoshikawa, Hajime Ohgushi, Takashi Ushida, Tetsuya Tateishi, “Osteopontin involvement in bone remodeling and its effects on in vivo osteogenic potential of bone marrow-derived osteoblastsrporous hydroxyapatite constructs,” rMaterials Science and Engineering, vol. C17, pp. 33–36, 2001.
[34] V. Tomas., D. R. Dean., M. V. Jose., B. Mathew., S. Chowdhury., Y. K. Vohra., “Nanostructured Biocomposite Scaffolds Based on Collagen Coelectrospun with Nanohydroxyapatite,” Biomacromolecules, vol. 8, pp. 631-637, 2007.
[35] C. S. Ku, M. Sathishkumar., S. P. Mun, “Binding affinity of proanthocyanidin from waste Pinus radiata bark onto proline-rich bovine achilles tendon collagen type I,” Chemosphere, vol. 67, pp. 1618-1627, 2007.
[36] C. Petibois., G. Gouspillou., K. Wehbe., J. P. Delage., G. Déléris., “Analysis of type I and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue,” Anal Bioanal Chem, vol. 386, pp. 1961-1966, 2006.
[37] Angela M.H. Ng, K.K. Tan, M.Y. Phang, O. Aziyati, G.H. Tan, M.R. Isa, B.S. Aminuddin, M. Naseem, O. Fauziah, B.H.I. Ruszymah, “Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone,” J Biomed Mater Res, 2007.
[38] J. L. Xu, K. A. Khor, Y. W. Lu, W. N. Chen, R. Kumar, “Osteoblast interactions with various hydroxyapatite based biomaterials consolidated using a spark plasma sintering technique,” J Biomed Mater Res, vol. 84B, pp. 224-230, 2007.
[39] J. C. Brodie, E. Goldie, G. Connel, J. Merry, M. H. Grant, “Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen,” J Biomed Mater Res, vol. 73A, pp. 409-421, 2005.
[40] 國立成功大學,碩士論文:鈍化具奈米級表面粗糙度的鈦合金對纖維細胞初期黏附之影響,製造工程研究所,盧尚頡。
[41] H. W. Kim, V. Salih, J. C. Knowles, H. E. Kim, “Hydroxyapatite and Fluor-Hydroxyapatite Layered Film on Titanium Processed by a Sol–Gel Route for Hard-Tissue Implants,” J Biomed Mater Res, vol. 71B, pp. 66-76, 2004.
[42] H. W. Kim, H. E. Kim, V. Salih, J. C. Knowles, “Sol-gel-modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses,” J Biomed Mater Res, vol. 74A, pp. 294-305, 2005.
[43] J. L. Xu, K. A. Khor, Y. W. Lu, W. N. Chen, R. Kumar, “Osteoblast interactions with various hydroxyapatite based biomaterials consolidated using a spark plasma sintering technique,” J Biomed Mater Res, vol. 84B, pp. 224-230, 2007.
[44] C. C. Chusuei, D. W. Goodman, M. J. Van Stipdonk, D. R. Justes, E. A. Schweikert, “Calcium Phosphate Phase Identification Using XPS and Time-of-Flight Cluster SIMS,” Analytical Chemistry, Vol. 71, pp. 149-153, 1999.
校內:2108-01-04公開