簡易檢索 / 詳目顯示

研究生: 潘嘉偉
Pan, Chia-Wei
論文名稱: 探討關鍵錫球所累積平均應變能密度之反應曲面於FCOB覆晶式載板接合封裝體之差異分析
Discrepancy Study on Response Surface of Accumulatively Average Strain Energy Density for Critical Ball of FCOB Package
指導教授: 陳榮盛
Chen, Rong-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 113
中文關鍵詞: FCOB應變能密度全域/局部模組分析法反應曲面法
外文關鍵詞: FCOB( Flip Chip on Board ), Strain energy density, Global & Local model, Response surface method
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近代由於電子產品的不斷進步與革新,如面板觸控型產品的輕薄短小與
    日新月異,因應產品的需求條件下,封裝型態必須朝結構強度更佳、散熱更好、訊號高速傳遞之目標進行突破與分析設計。再者,FC、DCA、CSP等封裝
    型態愈來愈受到重視,故本文將針對FCOB覆晶式載板接合封裝體研究其相關設計參數,進而探討其參數變化下對失效關鍵錫球之平均應變能密度所造成之
    反應差異,最後達到FCOB封裝體疲勞壽命之最佳化設計。
    本文採用ANSYS10.0有限元素分析軟體進行FCOB封裝體模擬分析,並
    考慮其錫球具塑性與多線性等向硬化行為下於溫度循環負載中所累積之平均
    應變能密度反應,其次並導入全域/局部模組分析法提升其模擬效率。再者,
    使用Syed疲勞壽命預測公式來計算FCOB封裝體之疲勞壽命,隨後,利用反應曲面法結合基因演算法進行最佳化分析,其結果顯示可藉由減少晶片厚度、
    銅元件直徑、底填膠熱膨脹係數、印刷電路板厚度、印刷電路板熱膨脹係數
    以及增加銅柱高度可有效地改善封裝體可靠度。最後,最佳化提升116% 之
    FCOB封裝體疲勞壽命,為3241循環。

    Because the modern times the electronic products progress unceasingly and innovate, like the kneading board touches controls the product mini-size with to change with each new day short, in accordance to under the product demand condition, the package state must be better toward the structural strength, the radiation to be better, goal of the signal high speed transmission to carry on the breakthrough and the analysis design. Furthermore, package states and so on FC, DCA, CSP receive more and more take seriously, therefore this article will aim at the FCOB package to study its related design variable, then discusses under its parameter variation the average strain energy density to create the response difference to the expiration critical ball, finally achieves optimization of design the FCOB package fatigue life.
    This article uses the ANSYS10.0 finite element analysis software to carry on the FCOB package simulation analysis, and considered that its solder ball has the plasticity and multilinear and so on to hardens under the behavior the accumulation the average strain energy density to respond in the temperature cycle load, next and inducts the Global & Local model to promote its simulation efficiency. Furthermore, uses the Syed fatigue life prognostic formula to calculate the FCOB package fatigue life, afterward, the use RSM ( Response surface method ) union GA ( Genetic algorithm ) carries on the optimization analysis, its result showed that may because of the reduced thickness of chip, the diameter of copper part, the CTE of underfill , the thickness of PCB, the CTE of PCB as well as increases the height of copper column to be possible to improve the package reliability effectively highly. Finally, the optimization promotes 116 % FCOB package fatigue life, is 3241 circles.

    中文摘要 ……………………………………….……………………………..…I 英文摘要……………………………………………………………………...…Ⅱ 誌謝……………………………………………………………………...…Ⅳ 目錄 …………………………………………………………………….…..…Ⅴ 表目錄 ……………………………………………….………….…………ⅤIII 圖目錄 ………………………………………………...…………………….…XI 符號說明 ………………………………………………………………...……XV 第一章 緒論 ………………………………………………………………….……1 1-1 前言 ………………………………………………………………………1 1-2 研究動機與目的 …………………………………………………………1 1-3 前人研究……………………………………………………………..……2 1-4 研究方法 …………………………………………………………………3 1-5 章節提要 …………………………………………………………………4 第二章 理論基礎 .………………………………………….……………….…5 2-1研究主題 ……………………………………..……………..……….……5 2-2關鍵錫球失效指標 …………………………………..……………...……6 2-2-1錫球破壞模式 ………………………………...…………….……6 2-2-2錫球塑性力學行為 ………………………………….……..….…7 2-2-3錫球之多線性等向硬化行為 …………………...………..….……9 2-2-4錫球之潛變學理論 ………………………………………..………9 2-2-5平均應變能密度指標之疲勞壽命預測 …………………………12 2-3全域/局部模組分析法 …………………………………………………13 2-4 實驗設計法 ……………………………………………………………15 2-4-1單一因子分析法…………………………………………..………15 2-4-2部份因子設計法 …………………………………………………15 2-4-3反應曲面法 ………………………………………………………17 2-5基因演算法 ……………………………………………...………………19 第三章 有限元素模型建立與評估……………………………………………….25 3-1覆晶式載板接合封裝體………………………………………….………25 3-1-1 FCOB封裝體製程簡介………………………………………...…25 3-1-2 FCOB封裝體結構與材料性質………………………………...…25 3-2 FCOB封裝體模擬設定 ………………………………………..…26 3-2-1 FCOB封裝體模型之基本假設 ……………….…………………26 3-2-2錫球幾何建立 ………………………………………..…………27 3-2-3分析型態與邊界條件 …………………………………..………27 3-2-4溫度循環負載………………………………………………..……28 3-3直接精細網格模組之探討 ………………………………………...……28 3-3-1破壞而失效之關鍵錫球評估 ……………………………….……28 3-3-2直接精細網格模組收斂分析 ………………………………….…29 3-3-3直接精細網格模組於多循環負載之穩定分析 …………….……29 3-3-4直接精細網格模組之評估………………………………….…….29 3-4全域/局部模組之探討 …………………………………………..………30 3-4-1全域模型位移收斂分析 …………………………………………30 3-4-2局部模型範圍評估 ………………………………………………30 3-4-3局部模型網格分析 ………………………………………………31 3-4-4全域/局部模組於多循環負載之穩定分析………………….……31 3-4-5全域/局部模組評估 ………………………………………………31 3-5直接精細網格模組&全域/局部模組分析誤差與效率…………….……31 3-6 FCOB封裝體原始設計疲勞壽命………………………………………32 第四章 反應曲面法之實驗設計 ……………………………………….………50 4-1單一因子分析……………………………………………….……………50 4-2部份因子設計法篩選設計參數 ………………………………...………53 4-3反應曲面法分析……………………………………….…………………54 4-3-1幾何式反應曲面分析 ……………………………………………54 4-3-2混合式反應曲面分析…………………………………………..…56 4-4反應曲面差異分析…………………...…………………………..………61 4-4-1幾何式反應曲面交互作用差異分析 ……………………………61 4-4-2混合式反應曲面交互作用差異分析……………………..………63 4-4-3幾何式與混合式反應曲面差異分析……………………..………67 第五章 FCOB封裝體最佳化設計………………………………………………100 5-1多因子最佳組合設計………………………………………………...…100 5-2幾何式反應曲面法分析之最佳設計………………………………...…101 5-3幾何式反應曲面法分析之最佳設計………………………………...…102 5-4各最佳化分析模式之效益探討………………………………………...103 第六章 結論與未來研究方向 ………………………………………….………106 6-1結論……………………………………………………………………106 6-2未來研究方向 ……………………………………………………….…110 參考文獻 ………………………………………………………………...…111

    [1]Patra, S. K., Lee, Y. C.(1991), “Quasi -Static Modeling of the Self-Alignment Mechanism in Flip-Chip Soldering-Part I:Single Solder Joint ”, Journal of Electronic Packaging, 113, pp. 337-342
    [2]Brakke, K.(1992), “ The Surface Evolver ”, Experimental Mathematics, no. 2,pp. 141-165
    [3]Darveaux, R., Banerji, K., Mawer, A. and Dody, G.(1995), “ Reliability of Plastic Ball Grid Array Assembly ”, Ball Grid Array Technology, McGmw-Hill, pp. 379-442
    [4]LAU,J.H.(1996), “ FLIP CHIP TECHNOLOGIES ”, MCGRAW-HILL, NEW YORK
    [5]Wang, C.H., Holmes, A.S. and Gao, S.(2000), “ Laser-assisted Bump Transfer for Flip Chip Assembly ”, Electronic Materials and Packaging,Hong Kong, pp. 86-90
    [6]Syed, A.(2004),“ Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints ”,Proceedings of the 54th Electronic Components and Technolog Conference, Las Vegas, Necada, USA, Vol. 1, pp. 737-746
    [7]Birzer C., Stoeckl S., Schuetz G., Fink M.(2006), “ Reliability Investigations of Leadless QFN Packages until End-of-Life with Application-Specific Board-Level Stress Tests ”, Proceedings of 56th IEEE Electronic Components
    and Technology Conference, San Diego, CA
    [8]Stoyanov, S., Bailey, C. and Desmulliez, M.(2009), “ Optimisation modeling for thermal fatigue reliability of lead-free interconnects in flip-chip packaging ”, Soldering & Surafce Mount Technology, Vol. 21, No.1,pp. 11-24, 2009
    [9]方子睿(2009),「以反應曲面法搭配基因演算法進行堆疊晶QFN構裝體疲勞壽命之最佳化設計」,國立成功大學工程科學系碩士畢業論文
    [10]Dongliang Wang, Yuan Yuan, Le Luo(2010), “ Failure Analysis of Sn-3.5Ag Solder Joints for FCOB Using 2-D FEA Model ”, ShangHai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    [11]Yong-Sung Park, Yong-Min Kwon, Jeong-Tak Moon, Young-WooLee, Jae-Hong Lee, and Kyung-Wook Paik(2010), “ Effects of Fine Size Lead-Free Solder Ball on the Interfacial Reactions and Joint eliability ”, Korea Advanced Institute of Science and Technology (KAIST)
    [12]S. Wiese(2001), “ Constitutive Behavior of Lead-free Solders vs. Lead-containing Solders -Experiments on Bulk Specimens and Flip-Chip Joints ” ,Electronic Components and Technology Conference
    [13]John H. Lau(2002), “ Modeling and Analysis of 96.5Sn-3.5Ag Lead-Free Solder Joints of Wafer Level Chip Scale package on Buildup Microvia Printed Circuit Board ”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No.1, pp.51-58
    [14]ANSYS Menu “ Structural Analysis User's Guide ”
    [15]C. Bailey, S. Stoyanov(2004), “ Reliability of Flip-Chip Interconnect for Fine Pitch Applications ”, IEEE, School of Computing and Mathematical Sciences,University of Greenwich, Old Royal Naval College, London
    [16]Bret A.Zahn(2003), “ Solder Joint Fatigue Life Model Methodology For 63Sn37Pb and 95.5Sn4Ag0.5Cu Materials ”, Electronic Components and Technology Conference
    [17]羅盛沐(2010),「以區間式遺傳演算法進行堆疊晶QFN構裝體疲勞壽命之區間最佳化設計」,國立成功大學工程科學系碩士畢業論文
    [18]陳昌榮(2010),「利用反應曲面法配合基因演算法進行直接晶片接合封裝體疲勞壽命之最佳化設計」,國立成功大學工程科學系碩士畢業論文
    [19]葉怡成(2001),「實驗計劃法-製程與產品最佳化」,五南圖書有限公司
    [20]周鵬程(2007),「遺傳演算法原理與應用-活用Matlab」,全華圖書股份有限公司

    無法下載圖示 校內:2016-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE