| 研究生: |
柯朝榮 Ke, Chau-Rung |
|---|---|
| 論文名稱: |
以環糊精-磁性奈米粒子之熱效應與包覆抗癌藥capsaicin之探討 Preparation of cyclodextrin coated nanomagnetic spheres for the investigation of thermal effect and the encapsulation of capsaicin |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 磁性奈米粒子 、β-環狀糊精 、藥物釋放 |
| 外文關鍵詞: | magnetic nanoparticle, thermal effect |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來伴隨著奈米科技的發展,磁性奈米材料廣泛的應用於生物醫學技術上。由於其獨特的超順磁特性,在外加磁場下,可以作為體內傳遞藥物的載體,並配合熱治療 (hyperthermia) 的技術,能夠有效抑制癌細胞,在醫學上相當具有研究價值。
本研究利用共沉澱法製備出磁性奈米粒子,在其外層包覆上β-環狀糊精,探討磁性奈米粒子的熱效應;最後利用環糊精中間疏水性的孔洞結構來包覆抗癌藥並探討其釋放行為。本研究以XRD來鑑定製備的Fe3O4與Fe3O4@β-CD粒子之晶相並估算其平均微晶尺寸,分別為8.18 nm與7.91 nm。在磁性分析上,從磁滯曲線可以得知Fe3O4與Fe3O4@β-CD粒子的飽和磁化量分別為67.4 emu/g與62.07 emu/g。為了應用於生物體內,我們將Fe3O4與Fe3O4@β-CD粒子進行滅菌處理,探討滅菌之後對於晶相、磁性質、熱效應、TEM影像是否會產生改變。而包覆藥物的探討,選擇capsaicin作為對象,很多的報告指出capsaicin對於癌細胞有明顯的抑制效果,特別是前列腺癌細胞。在本研究中以各種不同的包覆條件來探討Fe3O4@β-CD包覆capsaicin藥物釋放的效果。
To use magnetic nanoparticles for anticancer treatment has attracted a lot of attentions because of their potential for hyperthermia anticancer treatment and drug carriers. In this study, cyclodextrin, known to be a good host for the inclusion of guest molecule was used to coat onto the magnetic nanospheres. The magnetic nanoparticles were synthesized by co-precipitation. The average size of the Fe3O4 nanoparticles was about 8.14 nm, which was observed and calculated by TEM. Upon the modification with β- cyclodextrin, the nanoparticles could achieve much better dispersion in solution. Modification of the nanospheres with cyclodextrin, the crystalline size nearly did not vary. The results from SQUID indicated the saturation magnetizations of the bare and cyclodextrin coated Fe3O4 nanoparticles were 67.40 and 62.07 emu/g, respectively. Therefore, both nanospheres gained almost similar magnetization intensity without significant hysteresis. In this work, the thermal effect obtained from bare magnetic nanospheres and the cyclodextrin modified nanospheres were compared. With bare nanoparticles, temperature could increase to 70 oC in 10 min and 80 oC in 20 min. With cyclodextrin modified nanospheres, 60 oC could be reached in 10 min. Particularly, once the nanospheres oriented into a necklace-like pattern, the thermal effect was superior to those without the circle. Consequently, the feasibility of both magnetic nanoparticles for hyperthermia treatment on cancer cells is confirmed.
1. Ching-Fuh LIN, Eih-Zhe LIANG, Sheng-Ming SHIH and Wei-Fang SU, Significance
of Surface Properties of CdS Nanoparticles, The Japan Society of Applied Physics, 42,
610-612, 2003
2. Q.S. Mei, K. Lu, Melting and superheating of crystalline solids: From bulk to
nanocrystals, Progress in Materials Science, 52, 1175-1262, 2007
3. Babincova M, et al, High-gradient magnetic capture of ferrofluids: implications for
drug targeting and tumor immobilization, Z Naturforsch (Sect C), 56, 909-911, 2001
4. Wang YX, Hussain SM, Krestin GP, Superparamagnetic iron oxide contrast agents:
physicochemical characteristics and applications in MR imaging, Eur Radiol, 11,
2319-2331, 2001
5. Bonnemain B, Superparamagnetic agents in magnetic resonance imaging;
physiochemical characteristics and clinical applications, J Drug Target, 6, 167-174,
1998
6. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P, Synthesis of iron oxide
nanoparticles used as MRI contrast agents: a parametric study, J Coll Int Sci, 212,
474-782, 1999
7. Goya GF, Berquo TS, Fonseca FC, Static and dynamic magnetic properties of spherical
magnetite nanoparticles, J Appl Phys, 94, 3520-3528, 2003
8. Olsvik O, Popovic T, Skjerve E, Cudjoe K S, Hornes E, Ugelstad J, Uhlen M,
Magneticseparati on techniques in diagnostic microbiology, Clin Microbiol Rev, 7,
43-54, 1994
9. Handgretinger R, Lang P, Schumm M, Taylor G, Neu S, Koscielnak E, Niethammer D,
Klingebiel T, Isolation and transplantation of autologous peripheral CD34+progenitor
cells highly purified by magnetic-activated cell sorting, Bone Marrow Transplant, 21,
987-996, 1998
10. Gupta AK, Curtis ASG, Lactoferrin and ceruloplasmin derivatized
superparamagneticiron oxide nanoparticles for targeting cell surface receptors,
Biomaterials, 25, 3029-3040, 2004
11. Gupta AK, Berry C, Gupta M, Curtis A, Receptor-mediated targeting of magnetic
nanoparticles using insulin as a surface ligand to prevent endocytosis, IEEE Trans
Nanobiosci, 2, 256-261, 2003
12. Ajay Kumar Gupta, Mona Gupta, Synthesis and surface engineering of iron oxide
nanoparticles for biomedical applications, Biomaterials, 26, 3995-4021, 2005
13. Lobel B, Eyal O, Kariv N, Katzir A, Temperature controlled CO2 laser welding of soft
tissues; Urinary bladder welding in different animal models, Lasers Surg Med, 26, 4-12,
2000
14. Xu H H, Smith D T, Simon C G, Strong and bioactive composites containing
nano-silica-fused whiskers for bone repair, Biomaterials, 25, 4615-4626, 2004
15. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R,
Real-time vital optical imaging of precancer using anti-epidermal growth factor
receptor antibodies conjugated to gold nanoparticles, Cancer Res, 63, 1999-2004, 2003
16. Kiessling AA, Anderson SC, Human embryonicstem cells, an introduction to the
science and therapeutic potential, USA: Jones & Bartlett Publishers; 2003
17. Bulte JW, Douglas T, Witwer B, et al, Magnetodendrimers allow endosomal magnetic
labeling and in vivo tracking of stem cells, Nat Biotechnol, 19, 1141-1147, 2001
18. Tobias Neuberger, Bernhard Scho¨pf, Heinrich Hofmann, Margarete Hofmann, Brigitte
von Rechenberg, Superparamagnetic nanoparticles for biomedical applications:
Possibilities and limitations of a new drug delivery system, Journal of Magnetism and
Magnetic Materials , 293, 483-496, 2005
19. Chouly C, Pouliquen D, Lucet I, Jeune P, Pellet JJ, Development of superparamagnetic
nanoparticles for MRI: effect of particles size, charge and surface nature on
biodistribution, J Microencapsul, 13, 245-255, 1996
20. Chatterjee J, Haik Y, Chen C-J, Size dependent magnetic properties of iron oxide
nanoparticles, J Magn Magn Mater, 257, 113-118, 2003
21. Pratsinis SE, Vemury S, Particle formation in gases—a review, Powder Technol, 88,
267, 1996
22. Lewin M, Carlesso N, Tung C-H, Tang X-W, Cory D, Scadden T, Weissleder R, Tat
peptide-derivatized magneticnano particles allow in vivo tracking and recovery of progenitor cells, Nature Biotechnology, 18, 410-414, 2000
23. Nielsen OS, Horsman M, Overgaard J, A future for hyperthermia in cancer treatment,
Eur J Cancer, 37, 1587-1589, 2001
24. K.L. Ang, S. Venkatraman, R.V. Ramanujan, Magnetic PNIPA hydrogels for
hyperthermia applications in cancer therapy, Materials Science and Engineering C, 27,
347-351, 2007
25. Luderer AA, Borrelli NF, Panzarino JN, Mansfield GR, Hess DM, Brown JL, Barnett
EH, Glass-ceramic-mediated, magneticfield-induced localized hyperthermia: response
of a murine mammary carcinoma, Radiat Res, 94, 190-198, 1983
26. Chan DCF, Kirpotin DB, Bunn Jr PA, Synthesis and evaluation of colloidal magnetic
iron oxides for the site specific radiofrequency-induced hyperthermia of cancer, J
Magn Magn Mater, 122, 374-378, 1993
27. Masashige Shinkai, Mitsugu Yanase, Intracellular hyperthermia for cancer using
magnetite cationic liposomes, Journal of Magnetism and Magnetic Materials, 194,
176-184, 1999
28. Lee CS, Lee H, Westervelt RM, Microelectromagnets for the control of magnetic
nanoparticles, Appl Phys Lett, 79, 3308-3310, 2001
29. Gupta AK, Wells S, Surface modified superparamagnetic nanoparticles for drug
delivery: preparation, characterization and cytotoxicity studies, IEEE Trans Nanobiosci,
3, 66-73, 2004
30. Reimers GW, Khalafalla SE, Preparing magnetic fluids by a peptizing method, US
Bureau Mines Tech Rep, 59, 1972
31. Cornell RM, Schertmann U, Iron oxides in the laboratory;preparation and
characterization, Weinheim: VCH, 1991
32. Cotton FA, Wilkinson G, Advanced inorganic chemistry, New York: Wiley
Interscience; 1988
33. L. C. Varanda and M. Jafelicci, Jr, Structural and magnetic transformation of
monodispersed iron oxide particles in a reducing atmosphere, JOURNAL OF
APPLIED PHYSICS, 92, 2079-2085, 2002
34. Chia-Lung Lin, Chia-Fen Lee , Wen-Yen Chiu, Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid, Journal of Colloid
and Interface Science, 291, 411-420, 2005
35. Shouheng Sun, Hao Zeng, Size-Controlled Synthesis of Magnetite Nanoparticles,
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 124, 8204-8205, 2002
36. Sun, SH; Zeng, H; Robinson, DB, et al, Monodisperse MFe2O4 (M = Fe, Co, Mn)
Nanoparticles, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 126,
273-279, 2004
37. Woo, K; Hong, J; Choi, S, et al, Easy synthesis and magnetic properties of iron oxide
nanoparticles, Chem. Mater, 16, 2814-2818, 2004
38. Thorsteinn Loftsson, Dominique Duchˆene, Cyclodextrins and their pharmaceutical
applications, International Journal of Pharmaceutics, 329, 1-11, 2007
39. E.M. Martin Del Valle, Cyclodextrins and their uses: a review, Process Biochemistry,
39, 1033-1046, 2004
40. L.A. Cobos Cruz, C.A. Mart´ınez Perez, H.A. Monreal Romero, P.E. Garc´ıa Casillas,
Synthesis of magnetite nanoparticles–β-cyclodextrin complex, Journal of Alloys and
Compounds, 466, 330-334, 2008
41. Kaneto Uekama, Fumitoshi Hirayama, and Tetsumi Irie, Cyclodextrin Drug Carrier
Systems, Chem. Rev, 98, 2045-2076, 1998
42. Mark E. Davis, Marcus E. Brewster, Cyclodextrin-based pharmaceutics: past, present
and future, Nature Reviews Drug Discovery, 3, 1023-1035, 2004
43. Akio Mori, So¨ren Lehmann, James O’Kelly, Takashi Kumagai, Julian C. Desmond,
Milena Pervan, William H. McBride, Masahiro Kizaki, and H. Phillip Koeffler,
Capsaicin, a Component of Red Peppers, Inhibits the Growth of Androgen-Independent,
p53 Mutant Prostate Cancer Cells, Cancer research, 66, 3222-3229, 2006
44. Nobuyuki Kozukue, Jae-sook Han, Analysis of Eight Capsaicinoids in Peppers and
Pepper-Containing Foods by High-Performance Liquid Chromatography and Liquid
Chromatography-Mass Spectrometry, J. Agric. Food Chem. 53, 9172-9181, 2005
校內:2027-06-01公開