簡易檢索 / 詳目顯示

研究生: 柯朝榮
Ke, Chau-Rung
論文名稱: 以環糊精-磁性奈米粒子之熱效應與包覆抗癌藥capsaicin之探討
Preparation of cyclodextrin coated nanomagnetic spheres for the investigation of thermal effect and the encapsulation of capsaicin
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 55
中文關鍵詞: 磁性奈米粒子β-環狀糊精藥物釋放
外文關鍵詞: magnetic nanoparticle, thermal effect
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來伴隨著奈米科技的發展,磁性奈米材料廣泛的應用於生物醫學技術上。由於其獨特的超順磁特性,在外加磁場下,可以作為體內傳遞藥物的載體,並配合熱治療 (hyperthermia) 的技術,能夠有效抑制癌細胞,在醫學上相當具有研究價值。
    本研究利用共沉澱法製備出磁性奈米粒子,在其外層包覆上β-環狀糊精,探討磁性奈米粒子的熱效應;最後利用環糊精中間疏水性的孔洞結構來包覆抗癌藥並探討其釋放行為。本研究以XRD來鑑定製備的Fe3O4與Fe3O4@β-CD粒子之晶相並估算其平均微晶尺寸,分別為8.18 nm與7.91 nm。在磁性分析上,從磁滯曲線可以得知Fe3O4與Fe3O4@β-CD粒子的飽和磁化量分別為67.4 emu/g與62.07 emu/g。為了應用於生物體內,我們將Fe3O4與Fe3O4@β-CD粒子進行滅菌處理,探討滅菌之後對於晶相、磁性質、熱效應、TEM影像是否會產生改變。而包覆藥物的探討,選擇capsaicin作為對象,很多的報告指出capsaicin對於癌細胞有明顯的抑制效果,特別是前列腺癌細胞。在本研究中以各種不同的包覆條件來探討Fe3O4@β-CD包覆capsaicin藥物釋放的效果。

    To use magnetic nanoparticles for anticancer treatment has attracted a lot of attentions because of their potential for hyperthermia anticancer treatment and drug carriers. In this study, cyclodextrin, known to be a good host for the inclusion of guest molecule was used to coat onto the magnetic nanospheres. The magnetic nanoparticles were synthesized by co-precipitation. The average size of the Fe3O4 nanoparticles was about 8.14 nm, which was observed and calculated by TEM. Upon the modification with β- cyclodextrin, the nanoparticles could achieve much better dispersion in solution. Modification of the nanospheres with cyclodextrin, the crystalline size nearly did not vary. The results from SQUID indicated the saturation magnetizations of the bare and cyclodextrin coated Fe3O4 nanoparticles were 67.40 and 62.07 emu/g, respectively. Therefore, both nanospheres gained almost similar magnetization intensity without significant hysteresis. In this work, the thermal effect obtained from bare magnetic nanospheres and the cyclodextrin modified nanospheres were compared. With bare nanoparticles, temperature could increase to 70 oC in 10 min and 80 oC in 20 min. With cyclodextrin modified nanospheres, 60 oC could be reached in 10 min. Particularly, once the nanospheres oriented into a necklace-like pattern, the thermal effect was superior to those without the circle. Consequently, the feasibility of both magnetic nanoparticles for hyperthermia treatment on cancer cells is confirmed.

    中文摘要 ........................................................................................................................I Abstract.............................................................................................…………………II 目錄.............................................................................................................................III 表目錄..........................................................................................................................V 圖目錄.........................................................................................................................VI 第ㄧ章 緒論.................................................................................................................1 1-1 磁性奈米粒子.....................................................................................................1 1-1-1 奈米材料的特性.........................................................................................1 1-1-2 磁性奈米材料..............................................................................................3 1-1-3 磁性奈米粒子的製備..................................................................................7 1-1-4 磁性奈米粒子之表面修飾..............................................................................9 1-2 環狀糊精............................................................................................................10 1-2-1 環狀糊精的結構特性................................................................................10 1-2-2 環狀糊精的應用........................................................................................11 1-2-3 環狀糊精在藥物釋放上的應用................................................................12 1-3 研究動機...........................................................................................................12 第二章 實驗方法與材料...........................................................................................12 2-1 實驗合成步驟...................................................................................................12 2-1-1 磁性奈米粒子 (Fe3O4) 之製備...............................................................12 2-1-2 Fe3O4 @β-CD之製備..................................................................................12 2-2 磁性奈米粒子之熱效應分析...........................................................................15 2-3 藥物包覆與釋放之流程...................................................................................15 2-3-1 藥物包覆流程............................................................................................15 2-3-2 藥物釋放之流程........................................................................................16 2-4 相關儀器分析及樣品製備...............................................................................17 2-4-1 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) ............17 2-4-2 高頻感應機................................................................................................17 2-4-3 X-ray 繞射儀 (X-ray diffractometer, XRD).............................................18 2-4-4 超導量子干涉儀 (SQUID).......................................................................18 2-5 實驗藥品...........................................................................................................19 2-6 實驗儀器...........................................................................................................20 第三章 結果與討論...................................................................................................21 3-1 磁性奈米粒子 (Fe3O4) 的製備與其表面修飾..............................................21 3-1-1 XRD 分析...................................................................................................22 3-1-2 磁性奈米氧化鐵之TEM 影像分析.........................................................26 3-1-3 磁性奈米粒子之磁性分析........................................................................32 3-2 磁性奈米粒子熱效應之探討...........................................................................36 3-3 Fe3O4@β-CD磁性奈米粒子包覆 capsaicin藥物之探討.............................42 第四章 結論...............................................................................................................51 參考文獻.....................................................................................................................52

    1. Ching-Fuh LIN, Eih-Zhe LIANG, Sheng-Ming SHIH and Wei-Fang SU, Significance
    of Surface Properties of CdS Nanoparticles, The Japan Society of Applied Physics, 42,
    610-612, 2003
    2. Q.S. Mei, K. Lu, Melting and superheating of crystalline solids: From bulk to
    nanocrystals, Progress in Materials Science, 52, 1175-1262, 2007
    3. Babincova M, et al, High-gradient magnetic capture of ferrofluids: implications for
    drug targeting and tumor immobilization, Z Naturforsch (Sect C), 56, 909-911, 2001
    4. Wang YX, Hussain SM, Krestin GP, Superparamagnetic iron oxide contrast agents:
    physicochemical characteristics and applications in MR imaging, Eur Radiol, 11,
    2319-2331, 2001
    5. Bonnemain B, Superparamagnetic agents in magnetic resonance imaging;
    physiochemical characteristics and clinical applications, J Drug Target, 6, 167-174,
    1998
    6. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P, Synthesis of iron oxide
    nanoparticles used as MRI contrast agents: a parametric study, J Coll Int Sci, 212,
    474-782, 1999
    7. Goya GF, Berquo TS, Fonseca FC, Static and dynamic magnetic properties of spherical
    magnetite nanoparticles, J Appl Phys, 94, 3520-3528, 2003
    8. Olsvik O, Popovic T, Skjerve E, Cudjoe K S, Hornes E, Ugelstad J, Uhlen M,
    Magneticseparati on techniques in diagnostic microbiology, Clin Microbiol Rev, 7,
    43-54, 1994
    9. Handgretinger R, Lang P, Schumm M, Taylor G, Neu S, Koscielnak E, Niethammer D,
    Klingebiel T, Isolation and transplantation of autologous peripheral CD34+progenitor
    cells highly purified by magnetic-activated cell sorting, Bone Marrow Transplant, 21,
    987-996, 1998
    10. Gupta AK, Curtis ASG, Lactoferrin and ceruloplasmin derivatized
    superparamagneticiron oxide nanoparticles for targeting cell surface receptors,
    Biomaterials, 25, 3029-3040, 2004
    11. Gupta AK, Berry C, Gupta M, Curtis A, Receptor-mediated targeting of magnetic
    nanoparticles using insulin as a surface ligand to prevent endocytosis, IEEE Trans
    Nanobiosci, 2, 256-261, 2003
    12. Ajay Kumar Gupta, Mona Gupta, Synthesis and surface engineering of iron oxide
    nanoparticles for biomedical applications, Biomaterials, 26, 3995-4021, 2005
    13. Lobel B, Eyal O, Kariv N, Katzir A, Temperature controlled CO2 laser welding of soft
    tissues; Urinary bladder welding in different animal models, Lasers Surg Med, 26, 4-12,
    2000
    14. Xu H H, Smith D T, Simon C G, Strong and bioactive composites containing
    nano-silica-fused whiskers for bone repair, Biomaterials, 25, 4615-4626, 2004
    15. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R,
    Real-time vital optical imaging of precancer using anti-epidermal growth factor
    receptor antibodies conjugated to gold nanoparticles, Cancer Res, 63, 1999-2004, 2003
    16. Kiessling AA, Anderson SC, Human embryonicstem cells, an introduction to the
    science and therapeutic potential, USA: Jones & Bartlett Publishers; 2003
    17. Bulte JW, Douglas T, Witwer B, et al, Magnetodendrimers allow endosomal magnetic
    labeling and in vivo tracking of stem cells, Nat Biotechnol, 19, 1141-1147, 2001
    18. Tobias Neuberger, Bernhard Scho¨pf, Heinrich Hofmann, Margarete Hofmann, Brigitte
    von Rechenberg, Superparamagnetic nanoparticles for biomedical applications:
    Possibilities and limitations of a new drug delivery system, Journal of Magnetism and
    Magnetic Materials , 293, 483-496, 2005
    19. Chouly C, Pouliquen D, Lucet I, Jeune P, Pellet JJ, Development of superparamagnetic
    nanoparticles for MRI: effect of particles size, charge and surface nature on
    biodistribution, J Microencapsul, 13, 245-255, 1996
    20. Chatterjee J, Haik Y, Chen C-J, Size dependent magnetic properties of iron oxide
    nanoparticles, J Magn Magn Mater, 257, 113-118, 2003
    21. Pratsinis SE, Vemury S, Particle formation in gases—a review, Powder Technol, 88,
    267, 1996
    22. Lewin M, Carlesso N, Tung C-H, Tang X-W, Cory D, Scadden T, Weissleder R, Tat
    peptide-derivatized magneticnano particles allow in vivo tracking and recovery of progenitor cells, Nature Biotechnology, 18, 410-414, 2000
    23. Nielsen OS, Horsman M, Overgaard J, A future for hyperthermia in cancer treatment,
    Eur J Cancer, 37, 1587-1589, 2001
    24. K.L. Ang, S. Venkatraman, R.V. Ramanujan, Magnetic PNIPA hydrogels for
    hyperthermia applications in cancer therapy, Materials Science and Engineering C, 27,
    347-351, 2007
    25. Luderer AA, Borrelli NF, Panzarino JN, Mansfield GR, Hess DM, Brown JL, Barnett
    EH, Glass-ceramic-mediated, magneticfield-induced localized hyperthermia: response
    of a murine mammary carcinoma, Radiat Res, 94, 190-198, 1983
    26. Chan DCF, Kirpotin DB, Bunn Jr PA, Synthesis and evaluation of colloidal magnetic
    iron oxides for the site specific radiofrequency-induced hyperthermia of cancer, J
    Magn Magn Mater, 122, 374-378, 1993
    27. Masashige Shinkai, Mitsugu Yanase, Intracellular hyperthermia for cancer using
    magnetite cationic liposomes, Journal of Magnetism and Magnetic Materials, 194,
    176-184, 1999
    28. Lee CS, Lee H, Westervelt RM, Microelectromagnets for the control of magnetic
    nanoparticles, Appl Phys Lett, 79, 3308-3310, 2001
    29. Gupta AK, Wells S, Surface modified superparamagnetic nanoparticles for drug
    delivery: preparation, characterization and cytotoxicity studies, IEEE Trans Nanobiosci,
    3, 66-73, 2004
    30. Reimers GW, Khalafalla SE, Preparing magnetic fluids by a peptizing method, US
    Bureau Mines Tech Rep, 59, 1972
    31. Cornell RM, Schertmann U, Iron oxides in the laboratory;preparation and
    characterization, Weinheim: VCH, 1991
    32. Cotton FA, Wilkinson G, Advanced inorganic chemistry, New York: Wiley
    Interscience; 1988
    33. L. C. Varanda and M. Jafelicci, Jr, Structural and magnetic transformation of
    monodispersed iron oxide particles in a reducing atmosphere, JOURNAL OF
    APPLIED PHYSICS, 92, 2079-2085, 2002
    34. Chia-Lung Lin, Chia-Fen Lee , Wen-Yen Chiu, Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid, Journal of Colloid
    and Interface Science, 291, 411-420, 2005
    35. Shouheng Sun, Hao Zeng, Size-Controlled Synthesis of Magnetite Nanoparticles,
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 124, 8204-8205, 2002
    36. Sun, SH; Zeng, H; Robinson, DB, et al, Monodisperse MFe2O4 (M = Fe, Co, Mn)
    Nanoparticles, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 126,
    273-279, 2004
    37. Woo, K; Hong, J; Choi, S, et al, Easy synthesis and magnetic properties of iron oxide
    nanoparticles, Chem. Mater, 16, 2814-2818, 2004
    38. Thorsteinn Loftsson, Dominique Duchˆene, Cyclodextrins and their pharmaceutical
    applications, International Journal of Pharmaceutics, 329, 1-11, 2007
    39. E.M. Martin Del Valle, Cyclodextrins and their uses: a review, Process Biochemistry,
    39, 1033-1046, 2004
    40. L.A. Cobos Cruz, C.A. Mart´ınez Perez, H.A. Monreal Romero, P.E. Garc´ıa Casillas,
    Synthesis of magnetite nanoparticles–β-cyclodextrin complex, Journal of Alloys and
    Compounds, 466, 330-334, 2008
    41. Kaneto Uekama, Fumitoshi Hirayama, and Tetsumi Irie, Cyclodextrin Drug Carrier
    Systems, Chem. Rev, 98, 2045-2076, 1998
    42. Mark E. Davis, Marcus E. Brewster, Cyclodextrin-based pharmaceutics: past, present
    and future, Nature Reviews Drug Discovery, 3, 1023-1035, 2004
    43. Akio Mori, So¨ren Lehmann, James O’Kelly, Takashi Kumagai, Julian C. Desmond,
    Milena Pervan, William H. McBride, Masahiro Kizaki, and H. Phillip Koeffler,
    Capsaicin, a Component of Red Peppers, Inhibits the Growth of Androgen-Independent,
    p53 Mutant Prostate Cancer Cells, Cancer research, 66, 3222-3229, 2006
    44. Nobuyuki Kozukue, Jae-sook Han, Analysis of Eight Capsaicinoids in Peppers and
    Pepper-Containing Foods by High-Performance Liquid Chromatography and Liquid
    Chromatography-Mass Spectrometry, J. Agric. Food Chem. 53, 9172-9181, 2005

    無法下載圖示 校內:2027-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE