簡易檢索 / 詳目顯示

研究生: 陳瑋晨
Chen, Wei-Chen
論文名稱: 利用鋰同位素探討高屏溪流域化學風化及季節性變化
Lithium Isotopic Fractionation during Chemical Weathering and Seasonal Changes in Gaoping River, Southern Taiwan
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 鋰同位素高屏溪矽酸鹽化學風化風化強度
外文關鍵詞: Li isotope, Gaoping River, Silicate chemical weathering, Weathering intensity
相關次數: 點閱:140下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在地質時間尺度上,矽酸鹽化學風化藉由消耗大氣中的二氧化碳影響全球氣候變遷,因此了解風化過程為重要的課題。河流的化學組成變化能提供來自水岩反應的訊息,為研究矽酸鹽風化的地質材料之一。台灣位於歐亞板塊及菲律賓海板塊交界,屬於年輕造山帶,具有強烈的造山作用,陡峭的坡度和高侵蝕速率使新鮮岩石暴露,進而增加化學風化速率。台灣南部乾濕季分明,不同季節之間懸殊的降雨量造就了截然不同的風化和侵蝕行為。
    為釐清不同季節高屏溪流域的風化行為,本研究採集高屏溪流域二月(乾季)及八月(濕季)兩個不同時期、上游至中游不同地點的河水樣品;另外梅雨季節前後(三月至七月)在高屏溪上游新發大橋採集連續時間序列的河水、地下水樣品。我們使用感應耦合電漿光譜儀(ICP-OES)與感應耦合電漿質譜儀(ICP-MS)測定樣本的主要元素濃度和微量元素濃度,樣品經前處理後至無塵室參考過去發表的管柱化學方法進行純化,並以多接收器感應耦合電漿質譜儀(MC-ICP-MS)分析鋰同位素。
    結果顯示高屏溪河水溶解相鋰同位素範圍+14.6-+23.0‰,略低於全球河水平均值(+23.0‰)。相較之下,新發大橋連續時間序列樣品鋰同位素變化不明顯(+14.6-+17.0‰)。從元素濃度比值我們發現強降雨事件後地下水和河水明顯混合,配合鋰同位素的數據來看,除了地下水之外,還包含了土壤孔隙水和上游河水的輸入。藉由鋰同位素和風化強度(Weathering intensity)討論高屏溪化學風化在全球尺度下代表的意義,我們發現在高屏溪受到次生礦物的影響顯著,就算強降雨事件時化學風化受到動力學限制也是如此。我們從δ7Li和Li/Ca的關係圖看到了矽酸鹽化學風化的變化,且發現相同時間高屏溪流域的碳酸鹽沉澱和溶解比例相近;儘管採樣點相同也會因為季節不同而有不同的碳酸鹽風化行為,新發大橋強降雨事件前有明顯的碳酸鹽沉澱訊號。進一步用Batch fractionation model評估高屏溪河水,發現次生礦物組成會影響河水鋰同位素分化因子,濕季河流有較強的物理侵蝕速率,水岩反應時間短導致δ7Li較乾季低約1.3-4.5‰。

    On geologic time scales, silicate chemical weathering depletes atmospheric CO2, so understanding weathering processes is an important issue. Chemical composition of river water provides information about water-rock reactions and is a useful geological material for studying silicate weathering. Taiwan is located at the junction of Eurasian plate and Philippine Sea plate, which has strong orogenic effects. The steep slope and high erosion rate expose fresh rocks, which increases chemical weathering rate. Southern Taiwan have distinct rainy seasons, and the disparity in rainfall between seasons results in different weathering and erosion behaviors. In order to determine the weathering behavior of Gaoping River catchment in different seasons, samples were collected from the upper to middle reaches of the river during dry (February) and wet (August) seasons. River water and groundwater samples were collected at Xinfa in the middle stream before and after the Asian rainy season (March to July). After pretreatment, the samples were purified in a clean room and analyzed for Li isotopic composition by Multi-Collectors Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The results show that the δ7Li of dissolved load ranges from +14.6 - +23.0‰ in Gaoping River, which is slightly lower than the global average (+23.0‰). In contrast, Li isotopic variation of the continuous time-series samples from Xinfa is not significant (+14.6-+17.0‰). Gaoping River ranges of medium weathering intensity, and its δ7Li is significantly affected by secondary mineral production relative to other rivers in the world. We used Batch fractionation model to assess the influence of the weathering regime on the dissolved δ7Li and found that Li isotopic fractionation factor of the dissolved load was affected by ilmenite and chlorite, two major secondary minerals in Gaoping River. Chemical weathering of rivers in dry season is supply-limited resulting in δ7Li being 1.3-4.5‰ heavier than in wet season.

    摘要 I 致謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第1章 緒論 1 1.1 化學風化作用 1 1.2 鋰同位素地球化學 2 1.3 鋰同位素在地表風化的應用 4 1.4 台灣河流概況 7 1.5 研究目的 7 第2章 研究區域概況 8 2.1 高屏溪流域地質條件 8 2.2 高屏溪氣候條件 10 第3章 研究原理與方法 11 3.1 樣品採集與保存 11 3.2 樣品前處理 12 3.2.1 懸浮沉積物和圍岩溶解實驗 12 3.2.2 管柱層析法 13 3.3 元素及同位素分析技術 17 3.3.1 標準品及檢量線 17 3.3.2 元素分析 17 3.3.3 鋰同位素分析 18 第4章 結果 22 4.1 高屏溪河水和地下水 22 4.1.1 河水溶解相主要元素和微量元素濃度 24 4.1.2 河水溶解相鋰濃度和鋰同位素 31 4.2 懸浮沉積物和圍岩的鋰濃度和鋰同位素 33 第5章 討論 35 5.1 河水溶解相鋰來源 35 5.1.1 大氣輸入 35 5.1.2 碳酸鹽輸入 36 5.1.3 矽酸鹽輸入 36 5.2 河水、地下水與季節變化之關聯性 38 5.3 高屏溪的矽酸鹽化學風化 40 5.3.1 評估矽酸鹽風化和物理侵蝕速率 40 5.3.2 化學風化和物理侵蝕的關係 42 5.3.3 高屏溪風化強度和鋰同位素的關係 44 5.4 次生礦物控制鋰同位素分化 48 5.4.1 次生礦物吸附鋰的證據 48 5.4.2 矽酸鹽風化的鋰同位素分化模型 51 5.5 河水鋰通量 55 第6章 結論 57 參考資料 59 附錄 68

    Bagard, M. L., West, A. J., Newman, K. and Basu, A. R. (2015) Lithium isotope fractionation in the Ganges–Brahmaputra floodplain and implications for groundwater impact on seawater isotopic composition. Earth and Planetary Science Letters. 432, 404-414.
    Bensimon, M., Bourquin, J. and Parriaux, A. (2000) Determination of ultra-trace elements in snow samples by inductively coupled plasma source sector field mass spectrometry using ultrasonic nebulization. Journal of Analytical Atomic Spectrometry. 15, 731-734.
    Berner, R. A., Lasaga, A. C. and Garrels, R. M. (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science. 283, 641-683.
    Blattmann, T. M., Wang, S. L., Lupker, M., Märki, L., Haghipour, N., Wacker, L., Chung, L. H., Bernasconi, S. M., Plötze, M. and Eglinton, T. I. (2019) Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Scientific Reports. 9, 2945.
    Bluth, G. J. and Kump, L. R. (1994) Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta. 58, 2341-2359.
    Bouchez, J., Von Blanckenburg, F. and Schuessler, J. A. (2013) Modeling novel stable isotope ratios in the weathering zone. American Journal of Science. 313, 267-308.
    Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M. and Yiou, F. (1995) Denudation rates determined from the accumulation of in situ-produced 10Be in the Luquillo Experimental Forest, Puerto Rico. Earth and Planetary Science Letters. 129, 193-202.
    Burton, K. and Vigier, N. (2012) Lithium isotopes as tracers in marine and terrestrial environments. Handbook of environmental isotope geochemistry, 41-59, Springer.
    Calmels, D., Gaillardet, J., Brenot, A. and France-Lanord, C. (2007) Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives. Geology. 35, 1003-1006.
    Chan, L.-H., Alt, J. C. and Teagle, D. A. H. (2002) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater–basalt exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters. 201, 187-201.
    Chen, C., Ho, H., Shea, K., Lo, W., Lin, W., Chang, H., Huang, C., Lin, C., Chen, G. and Yang, C. (2000) Geologic Map of Taiwan (1/500000). Central Geological Survey, Ministry of Economic Affairs, Taipei, Taiwan.
    Chung, C. H., You, C. F. and Chu, H. Y. (2009) Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems. 76, 433-443.
    Clergue, C., Dellinger, M., Buss, H., Gaillardet, J., Benedetti, M. and Dessert, C. (2015) Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles). Chemical Geology. 414, 28-41.
    Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C. and Stark, C. P. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature. 426, 648-651.
    Dellinger, M., Gaillardet, J., Bouchez, J., Calmels, D., Louvat, P., Dosseto, A., Gorge, C., Alanoca, L. and Maurice, L. (2015) Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochimica et Cosmochimica Acta. 164, 71-93.
    Drever, J. I. (1994) The effect of land plants on weathering rates of silicate minerals. Geochimica et Cosmochimica Acta. 58, 2325-2332.
    Drever, J. I. and Zobrist, J. (1992) Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps. Geochimica et Cosmochimica Acta. 56, 3209-3216.
    Emberson, R., Hovius, N., Galy, A. and Marc, O. (2016) Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding. Nature Geoscience. 9, 42-45.
    Ferrier, K. L. and Kirchner, J. W. (2008) Effects of physical erosion on chemical denudation rates: A numerical modeling study of soil-mantled hillslopes. Earth and Planetary Science Letters. 272, 591-599.
    Flesch, G. D., Anderson, A. R. and Svec, H. J. (1973) A secondary isotopic standard for 6Li/7Li determinations. International Journal of Mass Spectrometry and Ion Physics. 12, 265-272.
    Gabet, E. J. and Mudd, S. M. (2009) A theoretical model coupling chemical weathering rates with denudation rates. Geology. 37, 151-154.
    Gaillardet, J., Dupre, B., Louvat, P. and Allegre, C. J. (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology. 159, 3-30.
    Gaillardet, J. and Galy, A. (2008) Himalaya-carbon sink or source? SCIENCE-NEW YORK THEN WASHINGTON-. 320, 1727.
    Galy, V., Peucker-Ehrenbrink, B. and Eglinton, T. (2015) Global carbon export from the terrestrial biosphere controlled by erosion. Nature. 521, 204-207.
    Gou, L. F., Jin, Z. D., von Strandmann, P., Li, G., Qu, Y. X., Xiao, J., Deng, L. and Galy, A. (2019) Li isotopes in the middle Yellow River: Seasonal variability, sources and fractionation. Geochimica Et Cosmochimica Acta. 248, 88-108.
    Granger, D. E., Kirchner, J. W. and Finkel, R. (1996) Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. The Journal of Geology. 104, 249-257.
    Hall, J. M. and Chan, L.-H. (2004) Li/Ca in multiple species of benthic and planktonic foraminifera: Thermocline, latitudinal, and glacial-interglacial variation. Geochimica et Cosmochimica Acta. 68, 529-545.
    Hilton, R. G., Gaillardet, J., Calmels, D. and Birck, J.-L. (2014) Geological respiration of a mountain belt revealed by the trace element rhenium. Earth and Planetary Science Letters. 403, 27-36.
    Hindshaw, R. S., Tosca, R., Goût, T. L., Farnan, I., Tosca, N. J. and Tipper, E. T. (2019) Experimental constraints on Li isotope fractionation during clay formation. Geochimica et Cosmochimica Acta. 250, 219-237.
    Huang, K. F., You, C. F., Liu, Y. H., Wang, R. M., Lin, P. Y. and Chung, C. H. (2010) Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry. 25, 1019-1024.
    Huh, Y., Chan, L.-H. and Edmond, J. M. (2001) Lithium isotopes as a probe of weathering processes: Orinoco River. Earth and Planetary Science Letters. 194, 189-199.
    Huh, Y., Chan, L. H., Zhang, L. and Edmond, J. M. (1998) Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochimica et Cosmochimica Acta. 62, 2039-2051.
    Hung, J. J., Yang, C. Y., Lai, I. J. and Li, Y. H. (2020) Rainfall and Human Impacts on Weathering Rates and Carbon-Nutrient Yields in the Watershed of a Small Mountainous River (Kaoping) in Southwestern Taiwan. Sustainability. 12, 7689.
    Jacobson, A. D., Blum, J. D., Chamberlain, C. P., Craw, D. and Koons, P. O. (2003) Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica et Cosmochimica Acta. 67, 29-46.
    James, R. H. and Palmer, M. R. (2000) The lithium isotope composition of international rock standards. Chemical Geology. 166, 319-326.
    Kao, S. and Milliman, J. D. (2008) Water and sediment discharge from small mountainous rivers, Taiwan: The roles of lithology, episodic events, and human activities. The Journal of Geology. 116, 431-448.
    Kısakűrek, B., James, R. H. and Harris, N. B. W. (2005) Li and δ7Li in Himalayan rivers: Proxies for silicate weathering? Earth and Planetary Science Letters. 237, 387-401.
    Lear, C. H. and Rosenthal, Y. (2006) Benthic foraminiferal Li/Ca: Insights into Cenozoic seawater carbonate saturation state. Geology. 34, 985-988.
    Lee, Y.-J., Chen, P.-H., Lee, T.-Y., Shih, Y.-T. and Huang, J.-C. (2020) Temporal variation of chemical weathering rate, source shifting and relationship with physical erosion in small mountainous rivers, Taiwan. Catena. 190, 104516.
    Lemarchand, E., Chabaux, F., Vigier, N., Millot, R. and Pierret, M. C. (2010) Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France). Geochimica Et Cosmochimica Acta. 74, 4612-4628.
    Li, G. and West, A. J. (2014) Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime and shifting seawater sinks. Earth and Planetary Science Letters. 401, 284-293.
    Likens, G., Bormann, F., Johnson, N. and Pierce, R. (1967) The calcium, magnesium, potassium, and sodium budgets for a small forested ecosystem. Ecology. 48, 772-785.
    Liu, C.-C., Maity, J. P., Jean, J.-S., Sracek, O., Kar, S., Li, Z., Bundschuh, J., Chen, C.-Y. and Lu, H.-Y. (2011) Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan. Journal of Environmental Science and Health, Part A. 46, 1218-1230.
    Liu, X. M., Wanner, C., Rudnick, R. L. and McDonough, W. F. (2015) Processes controlling δ7Li in rivers illuminated by study of streams and groundwaters draining basalts. Earth and Planetary Science Letters. 409, 212-224.
    Liu, Y. C., You, C. F., Huang, K. F., Wang, R. M., Chung, C. H. and Liu, H. C. (2012) Boron sources and transport mechanisms in river waters collected from southwestern Taiwan: Isotopic evidence. Journal of Asian Earth Sciences. 58, 16-23.
    Lundberg, N. and Dorsey, R. J. (1990) Rapid Quaternary emergence, uplift, and denudation of the Coastal Range, eastern Taiwan. Geology. 18, 638-641.
    Ma, T. T., Weynell, M., Li, S. L., Liu, Y. S., Chetelat, B., Zhong, J., Xu, S. and Liu, C. Q. (2020) Lithium isotope compositions of the Yangtze River headwaters: Weathering in high-relief catchments. Geochimica Et Cosmochimica Acta. 280, 46-65.
    Magna, T., Wiechert, U. H. and Halliday, A. N. (2004) Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. International Journal of Mass Spectrometry. 239, 67-76.
    Milliman, J. D. and Farnsworth, K. L. (2013) River discharge to the coastal ocean: a global synthesis. Cambridge University Press
    Milliman, J. D. and Syvitski, J. P. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The journal of Geology. 100, 525-544.
    Millot, R., Gaillardet, J., Dupré, B. and Allègre, C. J. (2002) The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth and Planetary Science Letters. 196, 83-98.
    Millot, R., Petelet-Giraud, E., Guerrot, C. and Négrel, P. (2010) Multi-isotopic composition (δ7Li–δ11B–δD–δ18O) of rainwaters in France: Origin and spatio-temporal characterization. Applied Geochemistry. 25, 1510-1524.
    Millot, R., Scaillet, B. and Sanjuan, B. (2010) Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach. Geochimica et Cosmochimica Acta. 74, 1852-1871.
    Millot, R., Vigier, N. and Gaillardet, J. (2010) Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochimica Et Cosmochimica Acta. 74, 3897-3912.
    Misra, S. and Froelich, P. N. (2012) Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering. Science. 335, 818-823.
    Moore, J., Jacobson, A. D., Holmden, C. and Craw, D. (2013) Tracking the relationship between mountain uplift, silicate weathering, and long-term CO2 consumption with Ca isotopes: Southern Alps, New Zealand. Chemical Geology. 341, 110-127.
    Moulton, K. L. and Berner, R. A. (1998) Quantification of the effect of plants on weathering: Studies in Iceland. Geology. 26, 895-898.
    Moulton, K. L., West, J. and Berner, R. A. (2000) Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. American Journal of Science. 300, 539-570.
    Peng, T.-R., Lu, W.-C., Chen, K.-Y., Zhan, W.-J. and Liu, T.-K. (2014) Groundwater-recharge connectivity between a hills-and-plains’ area of western Taiwan using water isotopes and electrical conductivity. Journal of hydrology. 517, 226-235.
    Peng, T. H., Li, Y. H. and Wu, F. T. (1977) Tectonic uplift rates of the Taiwan island since the early Holocene. Mem. Geol. Soc. China. 2, 57-69.
    Pistiner, J. S. and Henderson, G. M. (2003) Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters. 214, 327-339.
    Pogge von Strandmann, P. A. E., Burton, K. W., James, R. H., van Calsteren, P. and Gislason, S. R. (2010) Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chemical Geology. 270, 227-239.
    Pogge von Strandmann, P. A. E., Burton, K. W., James, R. H., van Calsteren, P., Gíslason, S. R. and Mokadem, F. (2006) Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth and Planetary Science Letters. 251, 134-147.
    Pogge von Strandmann, P. A. E., Fraser, W. T., Hammond, S. J., Tarbuck, G., Wood, I. G., Oelkers, E. H. and Murphy, M. J. (2019) Experimental determination of Li isotope behaviour during basalt weathering. Chemical Geology. 517, 34-43.
    Pogge von Strandmann, P. A. E., Frings, P. J. and Murphy, M. J. (2017) Lithium isotope behaviour during weathering in the Ganges Alluvial Plain. Geochimica Et Cosmochimica Acta. 198, 17-31.
    Pogge von Strandmann, P. A. E. and Henderson, G. M. (2015) The Li isotope response to mountain uplift. Geology. 43, 67-70.
    Pogge von Strandmann, P. A. E., Kasemann, S. A. and Wimpenny, J. B. (2020) Lithium and Lithium Isotopes in Earth's Surface Cycles. Elements. 16, 253-258.
    Raymo, M. E. and Ruddiman, W. F. (1992) Tectonic forcing of late Cenozoic climate. Nature. 359, 117-122.
    Riebe, C. S., Hahm, W. J. and Brantley, S. L. (2017) Controls on deep critical zone architecture: A historical review and four testable hypotheses. Earth Surface Processes and Landforms. 42, 128-156.
    Riebe, C. S., Kirchner, J. W. and Finkel, R. C. (2003) Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochimica et Cosmochimica Acta. 67, 4411-4427.
    Riebe, C. S., Kirchner, J. W. and Finkel, R. C. (2004) Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters. 224, 547-562.
    Riebe, C. S., Kirchner, J. W., Granger, D. E. and Finkel, R. C. (2001) Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology. 29, 511-514.
    Rose, E. F., Chaussidon, M. and France-Lanord, C. (2000) Fractionation of boron isotopes during erosion processes: the example of Himalayan rivers. Geochimica et Cosmochimica Acta. 64, 397-408.
    Rudnick, R. L., Tomascak, P. B., Njo, H. B. and Gardner, L. R. (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chemical Geology. 212, 45-57.
    Smith, A. D. and Lewis, C. (2007) Geochemistry of metabasalts and associated metasedimentary rocks from the Lushan formation of the upthrust slate belt, south-central Taiwan. International Geology Review. 49, 1-13.
    Stevenson, E. I., Aciego, S. M., Chutcharavan, P., Parkinson, I. J., Burton, K. W., Blakowski, M. A. and Arendt, C. A. (2016) Insights into combined radiogenic and stable strontium isotopes as tracers for weathering processes in subglacial environments. Chemical Geology. 429, 33-43.
    Tang, Y.-J., Zhang, H.-F. and Ying, J.-F. (2007) Review of the lithium isotope system as a geochemical tracer. International Geology Review. 49, 374-388.
    Teng, F.-Z., Li, W.-Y., Rudnick, R. L. and Gardner, L. R. (2010) Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth and Planetary Science Letters. 300, 63-71.
    Teng, F. Z., McDonough, W. F., Rudnick, R. L., Dalpe, C., Tomascak, P. B., Chappell, B. W. and Gao, S. (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochimica Et Cosmochimica Acta. 68, 4167-4178.
    Tranter, M., Brown, G., Raiswell, R., Sharp, M. and Gurnell, A. (1993) A CONCEPTUAL-MODEL OF SOLUTE ACQUISITION BY ALPINE GLACIAL MELTWATERS. Journal of Glaciology. 39, 573-581.
    Velbel, M. A. (1993) Temperature dependence of silicate weathering in nature: How strong a negative feedback on long-term accumulation of atmospheric CO2 and global greenhouse warming? Geology. 21, 1059-1062.
    Verney-Carron, A., Vigier, N. and Millot, R. (2011) Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering. Geochimica et Cosmochimica Acta. 75, 3452-3468.
    Vigier, N., Decarreau, A., Millot, R., Carignan, J., Petit, S. and France-Lanord, C. (2008) Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochimica et Cosmochimica Acta. 72, 780-792.
    Vigier, N., Gislason, S. R., Burton, K., Millot, R. and Mokadem, F. (2009) The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland. Earth and Planetary Science Letters. 287, 434-441.
    Walker, J. C., Hays, P. and Kasting, J. F. (1981) A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature. Journal of Geophysical Research: Oceans. 86, 9776-9782.
    Walker, J. F. and Krabbenhoft, D. P. (1998) Groundwater and surface-water interactions in riparian and lake-dominated systems. Isotope Tracers in Catchment Hydrology, 467-488, Elsevier.
    Wang, Q.-L., Chetelat, B., Zhao, Z.-Q., Ding, H., Li, S.-L., Wang, B.-L., Li, J. and Liu, X.-L. (2015) Behavior of lithium isotopes in the Changjiang River system: Sources effects and response to weathering and erosion. Geochimica et Cosmochimica Acta. 151, 117-132.
    Wang, Y., Fan, D., Liu, J. T. and Chang, Y. (2016) Clay-mineral compositions of sediments in the Gaoping River-Sea system: Implications for weathering, sedimentary routing and carbon cycling. Chemical Geology. 447, 11-26.
    West, A. J., Bickle, M. J., Collins, R. and Brasington, J. (2002) Small-catchment perspective on Himalayan weathering fluxes. Geology. 30, 355-358.
    White, A. F. and Blum, A. E. (1995) Effects of climate on chemical_ weathering in watersheds. Geochimica et Cosmochimica Acta. 59, 1729-1747.
    White, A. F., Blum, A. E., Bullen, T. D., Vivit, D. V., Schulz, M. and Fitzpatrick, J. (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochimica et Cosmochimica Acta. 63, 3277-3291.
    Willenbring, J. K. and Von Blanckenburg, F. (2010) Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature. 465, 211-214.
    Williams, L. B. and Hervig, R. L. (2005) Lithium and boron isotopes in illite-smectite: The importance of crystal size. Geochimica et Cosmochimica Acta. 69, 5705-5716.
    Wimpenny, J., Colla, C. A., Yu, P., Yin, Q.-Z., Rustad, J. R. and Casey, W. H. (2015) Lithium isotope fractionation during uptake by gibbsite. Geochimica et Cosmochimica Acta. 168, 133-150.
    Wimpenny, J., Gislason, S. R., James, R. H., Gannoun, A., Pogge Von Strandmann, P. A. E. and Burton, K. W. (2010) The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochimica Et Cosmochimica Acta. 74, 5259-5279.
    Yang, T. F., Yeh, G.-H., Fu, C.-C., Wang, C.-C., Lan, T.-F., Lee, H.-F., Chen, C.-H., Walia, V. and Sung, Q.-C. (2004) Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environmental Geology. 46, 1003-1011.
    You, C. F., Lee, T., Louis, B., Shen, J. J. and Chen, J. C. (1988) 10Be study of rapid erosion in Taiwan. Geochimica et Cosmochimica Acta. 52, 2687-2691.
    Zhang, X., Saldi, G. D., Schott, J., Bouchez, J., Kuessner, M., Montouillout, V., Henehan, M. and Gaillardet, J. (2021) Experimental constraints on Li isotope fractionation during the interaction between kaolinite and seawater. Geochimica et Cosmochimica Acta. 292, 333-347.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE