簡易檢索 / 詳目顯示

研究生: 李偉誠
Li, Wei-Cheng
論文名稱: 以街谷設計型式評估台灣主要都市室外人行尺度之風環境
Using the Design Variables of Street Canyon to Evaluate the Wind Environment in Outdoor Pedestrian Area of Major Cities in Taiwan
指導教授: 謝俊民
Hsieh, Chun-Ming
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 107
中文關鍵詞: 室外風環境街谷設計型式騎樓直接數值模擬風速發生機率評估法
外文關鍵詞: outdoor wind environment, street canyon, arcade, direct numerical simulation (DNS), exceedance probability assessment (EPA)
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著都市快速地發展,都市熱島效應(urban heat island effect, UHI)日益嚴重,其高溫化現象與風環境明顯相關,都市街道通風程度、風道等保持舒適室外風環境的重要因素應受到規劃領域之重視。
    室外之通風環境直接影響的是行人對於溫熱環境的感受,對於台灣都市中人行環境中所特有之騎樓,更是保障行人安全行走的絕對空間。但在國內對於室外通風之相關研究則鮮有主題針對騎樓之通風效率,於規劃過程中更缺乏適切的評估方法建立。
    本研究利用進行精度驗證後的直接數值模擬(direct numerical simulation, DNS),透過歸納後的台灣都市街谷設計型式,進行各個街谷型態中,人行區域騎樓內高1.5公尺之行人風環境的速度場求解。發現在街谷座向、街谷寬度、街谷高度三個變數中,街谷與騎樓之風環境形塑主要為街谷座向影響相對最大、其次為街谷高度。
    研究地區則針對台灣主要都市的台北市、台中市與高雄市,配合三地於2003年至2007年夏季6月至9月之氣象資料,分析該期間中的風向分配,並以最近似原始風向風速資料之韋伯分配(Weibull distribution)疊代出各風向之尺度參數及形狀參數。
    而後利用50組不同座向、寬度與高度的街谷中解出的速度場,配合台北、台中、高雄的風向風速韋伯分配參數,以發生機率評估法求算出各街谷騎樓於各地區風速大於每秒1.5公尺的通風程度,發現各地區的韋伯風速分配偏向程度可明顯反映各案例所在之風速機率高低程度,亦即該地區某風向的韋伯分配愈左偏,風速機率愈大。反之該地區某風向的韋伯分配愈右偏,風速機率愈小。
    最後透過比較各案例與不同氣候條件所產生之通風程度良窳,提出因地制宜的都市人行空間之風環境規劃參考,希望能提供在都市規劃階段中,可尋的通風策略與規劃方針。

    The topic of heat island effect (UHI) is being more and more emphasized in recent years. Since there is a highly correlation between air temperature and outdoor wind environment, urban planners and designers have to consider the wind environment and ventilation path simultaneously when thinking about the future urban development.
    In fact, the change of air temperature in urban area has a highly effect on residents’ comfort especially the pedestrians. As the mentioned outdoor wind environment affects the thermal environment of metropolis. However, there is still a long-term ignorance on the discussion of ventilation efficiency in the Taiwanese arcade. It is without mentioning that there should be an imperative assessment in urban planning stage.
    After a series of validation, the direct numerical simulation (DNS) was employed accurately in this study to simulate types of urban canyon, the focus area is under the arcade of urban canyons. And further, the observations are all on the height of 1.5 meters above the ground surface. The results showed the orientation of street canyon has a higher effect than the other variables.
    The study areas were base on metropolis of Taiwan. There are Taipei City, Taichung City and Kaohsiung City respectively. The meteorological data recorded in summer (June to September) 2003 to 2007 was analyzed to estimate the wind direction and the parameters of Weibull distribution. All of the above parameters were used for exceedance probability assessment.
    After the simulation of the 50 urban canyon cases in different orientation, width and height, the wind speed ratios and Weibull parameters were employed in the steps of exceedance probability assessment of the three cities. This study revealed that there is a highly negative correlation between the positively skewed level of Weibull distribution and exceedance probability.
    This process not just proves the feasibility of outdoor ventilation assessment in Taiwanese arcade, but the assessment results are capable of giving suggestions for outdoor ventilation strategies in Taiwanese urban planning.

    目 錄 摘要 I Abstract II 謝誌 III 目錄 IV 表目錄 V 圖目錄 VI 第一章 緒論 - 1 - 1-1. 研究背景與動機 - 1 - 1-2. 研究範圍與目的 - 3 - 1-3. 研究內容與流程 - 4 - 第二章 相關文獻回顧 - 6 - 2-1. 都市氣候 - 6 - 2-2. 都市熱島 - 7 - 2-3. 風環境與街谷相關研究 - 9 - 2-4. 風環境評估準則 - 11 - 第三章 研究方法 - 16 - 3-1. 研究地區風速資料分析 - 16 - 3-2. 計算流體動力學 - 17 - 3-3. 發生機率評估法 - 22 - 第四章 計算流體動力學驗證 - 23 - 4-1. 速度場驗證 - 23 - 4-2. 速度場驗證結果 - 25 - 第五章 研究設計 - 29 - 5-1. 幾何條件設計 - 29 - 5-2. 邊界條件設計 - 36 - 5-3. 研究操作流程 - 38 - 5-4. 研究限制 - 40 - 第六章 計算流體動力學模擬結果 - 41 - 6-1. 速度場模擬結果 - 41 - 6-2. 街谷座向(O)模擬結果分析 - 42 - 6-3. 街谷寬度(W)模擬結果分析 - 64 - 6-4. 街谷高度(H)模擬結果分析 - 68 - 6-5. 小結 - 72 - 第七章 研究地區風速發生機率分析 - 74 - 7-1. 研究地區氣象條件分析 - 74 - 7-2. 研究地區風向資料分析 - 75 - 7-3. 研究地區風速資料分析 - 78 - 7-4. 小結 - 80 - 7-5. 風速比轉置(rotating) - 81 - 7-6. 研究地區風速發生機率評估 - 82 - 7-7. 小結 - 95 - 第八章 結論與建議 - 97 - 8-1. 結論 - 97 - 8-2. 後續研究建議 - 99 - 參考文獻 - 100 - 中文文獻 - 100 - 英文文獻 - 101 - 日文文獻 - 103 - 附件 - 104 - 表目錄 表1 氣候尺度分類(吉野正敏,1976) - 6 - 表2 蒲福氏風級表(中央氣象局) - 11 - 表3 各國所使用之評估標準(丁育群、朱佳仁,2000) - 12 - 表4 強風對步行之阻礙程度評估標準(日本建築學會,1993) - 13 - 表5 加拿大RWDI行人風評估標準 - 13 - 表6 東京大學生產技術研究所強風評價標準(村上周三, 1983) - 14 - 表7 平均風速為基準的風環境評估標準(風工學研究所, 2005) - 14 - 表8 住宅區的行人風評估標準(丁育群,2000) - 14 - 表9 東京大學生產技術研究所風環境評價標準(Murakami, 1975) - 15 - 表10 不同地況的邊界層高度與指數(建築物荷重指針・同解說,2004) - 21 - 表11 本研究風環境評價標準(Murakami, 1975) - 22 - 表12 速度場驗證邊界條件綜理表 - 24 - 表13 本研究速度場驗證結果與紊流假設結果對照表 - 28 - 表14 邊界條件設計綜理表 - 37 - 表15 CFD模擬案例編號表 - 38 - 表16 案例模擬騎樓速度場R(a)結果表 - 41 - 表17 氣象站基本資料(中央氣象局) - 74 - 表18 台北市2003年至2007年夏季全天風向 - 75 - 表19 台中市2003年至2007年夏季全天風向 - 76 - 表20 高雄市2003年至2007年夏季全天風向 - 77 - 表21 2003年至2007年夏季各地韋伯分配K(a)與C(a)參數表 - 78 - 表22 2003年至2007年夏季各地平均風速與風速眾數表 - 80 - 表23 案例R(a)對應各地A(a)、C(a)、K(a)轉置表 - 82 - 表24 台北市案例街谷風速大於1.5m/s機率綜理表 - 83 - 表25 台中市案例街谷風速大於1.5m/s機率綜理表 - 84 - 表26 高雄市案例街谷風速大於1.5m/s機率綜理表 - 85 - 表27 街谷案例於研究地區風速1.5m/s發生機率評估結果表 - 96 - 附表1 速度場驗證結果表(入流風向角=0°) - 104 - 附表2 速度場驗證結果表(入流風向角=22.5°) - 105 - 附表3 速度場驗證結果表(入流風向角=45°) - 106 - 附表4 民國90年至96年歷年核發建築物使用執照統計表(內政部營建署,2007) - 107 - 圖目錄 圖1 研究流程圖 - 5 - 圖2 都市熱島循環示意圖( T. Gal et al., 2009) - 7 - 圖3 WindPerfect操作介面 - 17 - 圖4 等間隔的離散示意圖 - 19 - 圖5 邊界層理論示意圖 - 20 - 圖6 速度場驗證幾何條件示意圖 - 24 - 圖7 速度場驗證求解結果(Z=0.2m×100=2m) - 25 - 圖8 速度場驗證結果對照圖 - 28 - 圖9 觀察範圍與計算網格 - 30 - 圖10 街谷座向示意圖(以Ο3為例) - 31 - 圖11 街谷寬度(W)案例示意圖 - 33 - 圖12 街谷街谷高度(H)案例示意圖 - 35 - 圖13 風速剖面設定示意圖 - 36 - 圖14 邊界條件示意圖(以Ο2與Ο8為例) - 37 - 圖15 計算流程圖 - 39 - 圖16 案例一模擬結果圖 - 43 - 圖17 案例二模擬結果圖 - 45 - 圖18 案例三模擬結果圖 - 47 - 圖19 案例四模擬結果圖 - 49 - 圖20 案例五模擬結果圖 - 51 - 圖21 案例六模擬結果圖 - 53 - 圖22 案例七模擬結果圖 - 55 - 圖23 案例八模擬結果圖 - 57 - 圖24 案例九模擬結果圖 - 59 - 圖25 案例十模擬結果圖 - 61 - 圖26 W案例模擬結果座向趨勢圖 - 62 - 圖27 H案例模擬結果座向趨勢圖 - 63 - 圖28 O1座向模擬結果趨勢圖(W) - 64 - 圖29 O2座向模擬結果趨勢圖(W) - 64 - 圖30 O3座向模擬結果趨勢圖(W) - 65 - 圖31 O4座向模擬結果趨勢圖(W) - 65 - 圖32 O5座向模擬結果趨勢圖(W) - 66 - 圖33 O1~O5座向模擬結果趨勢圖(W) - 67 - 圖34 O1~O5座向模擬結果平均趨勢圖(W) - 67 - 圖35 O1座向模擬結果趨勢圖(H) - 68 - 圖36 O2座向模擬結果趨勢圖(H) - 68 - 圖37 O3座向模擬結果趨勢圖(H) - 69 - 圖38 O4座向模擬結果趨勢圖(H) - 69 - 圖39 O5座向模擬結果趨勢圖(H) - 70 - 圖40 O1~O5座向模擬結果趨勢圖(H) - 71 - 圖41 O1~O5座向模擬結果平均趨勢圖(H) - 71 - 圖42 台北市2003年至2007年夏季風向機率圖 - 75 - 圖43 台中市2003年至2007年夏季風向機率圖 - 76 - 圖44 高雄市2003年至2007年夏季風向機率圖 - 77 - 圖45 2003年至2007年夏季各地韋伯分配機率密度圖 - 79 - 圖46 案例入流風向角對應各地風向轉化圖 - 81 - 圖47 各案例街谷迎風面風速大於1.5m/s發生機率趨勢圖(台北市) - 86 - 圖48 各案例街谷背風面風速大於1.5m/s發生機率趨勢圖(台北市) - 87 - 圖49 各案例街谷兩側風速大於1.5m/s發生機率趨勢圖(台北市) - 88 - 圖50 各案例街谷迎風面風速大於1.5m/s發生機率趨勢圖(台中市) - 89 - 圖51 各案例街谷背風面風速大於1.5m/s發生機率趨勢圖(台中市) - 90 - 圖52 各案例街谷兩側風速大於1.5m/s發生機率趨勢圖(台中市) - 91 - 圖53 各案例街谷迎風面風速大於1.5m/s發生機率趨勢圖(高雄市) - 92 - 圖54 各案例街谷背風面風速大於1.5m/s發生機率趨勢圖(高雄市) - 93 - 圖55 各案例街谷兩側風速大於1.5m/s發生機率趨勢圖(高雄市) - 94 - 附圖1 速度場驗證測定點分佈示意圖(Yoshitami et al., 2003) - 104 -

    參考文獻
    中文文獻
    3D立體熱流體模擬解析軟體「WindPerfect」,http://www.env-simulation.com/ch/index.html,環境模擬股份有限公司,2009年6月20日
    96年營建統計年報,民96,內政部營建署
    丁育群、朱佳仁 (2000),高層建築物風場環境評估準則研擬,內政部建築研究所研究計劃報告,A 40160
    台中市騎樓設置標準,民93,台中市政府
    台北市綜合設計公共開放空間設置及管理維護要點,民83,台北市政府
    台北市建築管理自治條例,民90,台北市政府
    市區道路工程規劃及設計規範之研究 (2001),內政部營建署
    朱佳仁 (2006),風工程概論,科技圖書出版公司,台北
    李偉誠、謝俊民 (2009),都市街廓比對街谷內風環境之影響,第十三屆國土規劃論壇
    李魁鵬 (1999),台灣四大都會區都市熱島之研究,國立成功大學建築學系博士論文,台南
    林憲德、李魁鵬、陳冠廷、林立人、郭曉青、陳子謙(1999),台灣四大都會區都市熱島效應實測解析(一),建築學報,第三十一期
    林憲德 (2008),生態社區評估系統之研究,內政部建築研究所委託計劃報告,PG9702-0016
    香港綠色建築科技網,http://gbtech.emsd.gov.hk/tc_chi/utilize/natural.html,機電工程署,2010年7月
    建築技術規則施工篇,民98,內政部營建署
    高雄市建築管理自治條例,民91,高雄市政府
    陳冠廷 (2000),台灣中小型都市熱島效應之觀測解析,國立成功大學建築學系碩士論文,台南
    莊月璇 (2001),台灣地區風速機率分佈之研究,國立中央大學土木工程學研究所碩士論文,桃園
    張效通,李彥墨 (2007),以耗能模擬探討平行配置住宅區之節能規劃策略,2007年中華民國都市計劃學會、區域科學學會、地區發展學會聯合年會暨論文研討會論文集
    都市熱島與生態社區評估手冊 (2010),內政部建築研究所
    黃美嬌 (1997),基礎紊流,台灣大學機械工程學系,台北
    鄒克萬、黃書偉 (2007),都市土地利用變遷對自然環境衝擊之空間影響分析,地理學報,第四十八期
    劉紹臣、劉振榮、林傳堯、許乾忠、林文澤(2003),台灣西部平原熱島效應,看守台灣專題企劃
    蒲福風級表,http://kitejack.myweb.hinet.net/connected/bft.htm,中央氣象局,2008年9月14日
    鄭寶祺、吳恩融 (2004),空氣流通方法可行性之研究,香港中文大學,香港
    英文文獻
    Akbari H., Davis S., Huang J., et al. (1992). Cooling our communities—A guidebook on tree planting and light colored surfacing, US Environmental protection Agency. Office of Policy Analysis, Climate Change Division.
    Athanasios Papoulis, S. Unnikrishna Pillai (2002). Probability, Random Variables, and Stochastic Processes, 4th Edition. Mc Graw Hill. US
    Chandler R.L (1965). Demonstration of a porcine adenovirous by electron microscopy. Virology 25, 143–145.
    Cheng H. H.,Wang F. (2005). Using a CFD approach for the study of street-level winds in a built-up area[J].Building and Environment.
    Duckworth, E. S. & Sandberg, J. S (1954). The effect of cities upon horizontal and vertical temperature gradients. Bull. Am. met. Soc., Boston, 35:198-207.
    Etheridge D., Sandberg M. (1996). Building Ventilation:Theory and Measurement. England.
    Edward Ng (2009). Policies and technical guidelines for urban planning of high-density cities - air ventilation assessment (AVA) of Hong Kong, Building and Environment, 44(2009):1478–1488.
    Gerdes F., Olivari D. (1999). Analysis of pollutant dispersion in an urban street canyon, J. Wind Eng. and Ind. Aero, 82:105-124.
    Grimmond, C.S.B., Oke,T.R (2002). Turbulent Heat Fluxs in Urban Areas:Observations and a Local-Scale Urban Meteorological Parameterization Scheme. LUMPS 41:792-810.
    Hsieh C. M., Ryozo Ooka et al. (2007). Improvement of thermal environment by building arrangement in the riverside townhouse. IAQVC Conference.
    J. A. K. Ackroyd, B. P. Axcell, A. I. Ruban (2001) Early developments of modern aerodynamics. Butterworth-Heinemann, Oxford, UK
    Koji Kagiya & Yasunobu Ashie (2007). National research project on Kaze-no-michi for city planning: Creation of ventilation paths of cool sea breeze in Tokyo, National institute for land and infrastructure management, Tsukuba, Japan
    Landsberg, H.E (1981). The Urban Climate. New York: Academic Press.
    Leschziner M.A (1995). Modelling turbulence in physically complex flows. Thomas Telford, London, UK.
    Mahmoud Bady, Shinsuke Kato, Hong Huang (2008). Towards the application of indoor ventilation efficiency indices to evaluate the air quality of urban areas, Building and Environment 43:1991-2004.
    Oke T. (1976). The distance between canopy and boundary layer urban heat island. Atmosphere 14(4), 191-203.
    Oke, T.R (1987). Boundary Layer Climates. London: Methuen
    Sundborg A. (1951). Climatological studies in Uppsala. Geographlca No. 22. Uppsala University, Dept of Geography.
    Seguro J.V., Lambert, T.W (2000). Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. Wind Engineering and Industrial Aerodyn, 85 (2000): 75-84.
    Stathopoulos A. and Tsekeris T. (2006). Methodology for processing archived ITS data for reliability analysis in urban networks. IEE Pro. Intelligent Transport Systems, 153 (1).
    Takahashi K., Yoshida H., et al. (2004). Measurement of thermal environment in Kyoto City and its prediction by CFD simulation. Energy and Buildings, Vol.16: 771–779.
    Tetsu Kubota, Masao Miura, Yoshihide Tominaga, Akashi Moshida (2008). Wind tunnel test on the relationship between building density and pedestrian-level wind velocity: Development guidelines for realizing acceptable wind environment in residential neighborhoods. Building and Environment, 43(2008):1699–1708.
    T. Gal, J. Unger (2009). Detection of ventilation paths using high resolution roughness parameter mapping in a large urban area, Building and Environment, 44 (2009):198–206.
    Xie Xiaomin, Huang Zhen, Wang Jiasong (2006). The impact of urban street layout on local atmospheric environment. Building and Environment, 41 (2006):1352–1363.
    Yoshihiro Ishida, Shinsuke Kato, Hong Huang, Ryozo Ooka (2005). Study on wind environment in urban blocks by CFD analysis wind velocity over street, Institute of industrial science, University of Tokyo, Japan.
    Zen Bu, Shinsuke Kato,Yoshihiro Ishida, Hong Haung (2009). New criteria for assessing local wind environment at pedestrian level base on exceedance probability analysis. Building and Environment, 44(2009):1501–1508.
    日文文獻
    CASBEE-HI (2006), 財團法人建築環境省
    Shuzo Murakami, Yasushige Morikawa (1975). Criteria for assessing wind-induced discomfort considering temperature effect, 日本建築學會計畫系論文報告集, (358): 9-17.
    Yoshitami Nonomura, Nobuyuki Kobayashi, Yoshihide Tominaga, Akashi Mochida (2003). The cross comparison of CFD results for flowfield around building models (part 3) the wind tunnnel test for the varification models on the flowfield around building blocks, 平成15年度日本風工学会年次研究発表会
    木梨智子、小野佳之、片岡浩人、川口彰久 (2005),市街地風環境の予測・評価技術 ,大林組技術研究所報 N0.69 2005.12
    市街地風環境予測のための流体数値解析ガイドブック-ガイドラインと検証用データベース-,http://www.aij.or.jp/jpn/publish/cfdguide/index.htm,日本建築學会,2007年3月
    吉野正敏 (1976),小氣候,大明堂株式會社
    村上周三,岩佐義輝,森川泰成 (1983),市街地低層部に関する風の性状と風環境評価に関する研究(III)居住者の日誌による風境調査と評価尺度に関する研究,日本建築学会論文報告集,325,74-84
    村上周三 (2003), CFDによる建築、都市の環境設計工学,東京大学出版会
    阪田升、長井大祐、小原久典、高野公敬 (2007),移動境界を用いた車体周辺気流のCFD解析,自動車技術会秋季学術講演会において発表
    風工学研究所編著 (2005),ビル風の基礎知識,鹿島出版会
    持田灯、富永禎秀、土屋直也、義江龍一郎、石田義洋、片岡浩人、吉川優、白澤多一、野津剛、張本和芳 (2007)。市街地風環境予測のための流体数値解析ガイドブックガイドラインと検証用データベース,日本建築学会
    都市の風環境評価と計画-ビル風から適風環境まで- (1993),日本建築学会
    建築物荷重指針・同解說,2004,日本建築學会

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE