簡易檢索 / 詳目顯示

研究生: 蔡泰成
Tsai, Tai-Cheng
論文名稱: 以雷射輔助化學氣相沈積法成長矽及鍺奈米簇集之光電特性研究
Investigation of electro-optical properties of Si and Ge nanoclusters grown using laser-assisted chemical vapor deposition method
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 161
中文關鍵詞: 奈米簇集
外文關鍵詞: Si, Ge, nanocluster
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由二氧化碳雷射輔助,利用傳統電漿增強式化學氣相沈積系統在低溫且沒有後續熱處理成長結晶矽及鍺奈米簇集。在不同的反應氣體流量比例及雷射輔助功率成長結晶矽奈米簇集嵌入氮化矽薄膜,研究薄膜的光激發光特性,隨著反應氣體NH3對SiH4的比例以及輔助的雷射功率增加,顯示有系統的光激發光譜藍移以及光激發光強度增強。光譜的藍移可以被歸因於在薄膜中的奈米簇集尺寸減小。奈米簇集非輻射中心數量的減少以及薄膜中奈米簇集密度的增加是造成光激發光強度增強的原因。利用結晶矽奈米簇集所製成光發射元件的電激發光也被探討,電激發光是由於載子穿透進入氮化矽薄膜內的發光中心複合所導致。絕緣層由矽奈米簇集嵌入氮化矽薄膜所組成的金屬-絕緣層-半導體結構,其電容-電壓特性和電荷保持力特性被探討。此金屬-絕緣層-半導體結構的記憶體特性,主要是由電荷儲存在矽奈米簇集所造成。元件被充電較長的時間或在較低的充電電壓其放電較慢。觀察到的電荷保持力行為可以藉由矽奈米簇集在氮化矽薄膜的空間分佈以及奈米簇集的尺寸分佈適當地解釋。於不同雷射功率所沈積的碳化矽薄膜,其光激發光特性也被研究。實驗結果顯示出,當二氧化碳雷射的功率增加時,其光激發光的強度和能量也增加。拉曼光譜和光激發光衰退行為可用以確認在不同雷射功率所沈積的薄膜,其光激發光是由嵌入碳化矽薄膜的矽奈米簇集量子侷限效應所導致。
    探討於不同二氧化碳雷射輔助功率所成長鍺奈米簇集嵌入氧化鍺薄膜的結構和光特性。隨著輔助成長的雷射功率增加,鍺奈米簇集的尺寸減小且密度增加。鍺奈米簇集的結晶態也隨著雷射功率增加而改善。我們所觀察到的光激發光特性,包括光譜位置、發光衰減和強度,可以歸因於量子侷限效應。利用雷射輔助電漿增強式化學氣相沈積系統沈積結晶鍺奈米簇集嵌入鍺薄膜。使用多層鍺奈米簇集嵌入鍺薄膜的結構製作電激發光元件電激發光來自於電子電洞對在鍺奈米簇集內複合。由鍺奈米簇集嵌入氧化鍺薄膜所構成的記憶體元件,電容對電壓特性所觀測到的記憶體現象,主要是由電荷儲存在鍺奈米簇集所導致。元件的電荷儲存與電荷保持力特性說明在低溫所沈積的鍺奈米簇集適合應用在記憶體元件。

    With CO2 laser assistance, crystalline silicon and germanium nanoclusters were deposited at a low temperature and without post-annealing using a conventional plasma-enhanced chemical vapor deposition system. Crystalline silicon nanocluster embedded silicon nitride films were deposited with various reactant gas flow rates and assisting laser power densities. The photoluminescence (PL) performances of the resultant films were studied, showing a systematic spectra blue shift and the enhancement of PL intensity with the increase of the reactant NH3/SiH4 gas flow rate ratio and the assisting laser power density used in the film deposition. The spectra blue shift can be ascribed to the decrease of the size of the nanoclusters in the films. The reduction of the amount of nonradiative centers in the nanoclusters and the increase of the number density of the nanoclusters in the film are responsible for the enhancement of the PL intensity. Electroluminescence (EL) emission of light-emitting devices using the crystalline silicon nanoclusters was also demonstrated, and the EL spectrum would be caused by the radiative recombination of charge carriers that tunnel into luminescence centers in the silicon nitride films. The capacitance-voltage (C-V) and charge retention characteristics of the metal–insulator–semiconductor (MIS) structure, in which the insulator layer was composed of silicon nanocluster-embedded silicon nitride, were studied. The memory effect of this MIS structure was dominantly attributed to the charge storage in the silicon nanoclusters. The results showed that the devices, charged for a longer time or under a lower charging voltage, discharge slower. The observed charge retention behaviors can be reasonably explained via the spatial distribution of silicon nanoclusters in the silicon nitride layer and the dispersion of the nanocluster sizes.
    The photoluminescence (PL) spectra of the silicon carbide films deposited with various CO2 laser power densities were investigated. The experimental results indicated that the PL intensity and energy increased with an increase of the CO2 laser power density. The Raman spectra and PL decay curves verified that the PL emission of the films deposited under various laser power densities can be attributed to the quantum confinement effect of the silicon nanoclusters embedded in the silicon carbide films. The structural and optical properties of the Ge nanocluster embedded in germanium oxide films deposited under various power densities of the assisting CO2 laser beam were also investigated. The size of the Ge nanoclusters decreased and the number density of the Ge nanoclusters increased with an increase of the laser power used in the film deposition. The crystallinity of the Ge nanoclusters was also improved with the assisting laser power. The observed photoluminescence (PL) characteristics, including the spectral position, decay curve and intensity of the emission bands, can be attributed to the quantum confinement effect. Crystalline Ge nanocluster-embedded Ge films were deposited by laser-assisted plasma enhanced chemical vapor deposition system. Raman scattering spectra showed a peak about the crystalline Ge nanoclusters for the Ge film deposited with CO2 laser assistance. TEM images and electron diffraction pattern also revealed that Ge nanoclusters had good crystallinity. The electroluminescent devices constructed with multilayered Ge nanocrystals-embedded Ge films were fabricated. The electroluminescence emission originated from the recombination of electron-hole pairs in the Ge nanoclusters. The memory devices constructed of germanium nanoclusters embedded germanium oxide. The memory effect observed in the capacitance-voltage curves of the devices were dominantly attributed to the charges storage in germanium nanoclusters. The charge storage and retention behaviors of the devices demonstrated that the Ge nanoclusters grown by this low temperature approach are promising for memory device applications.

    Contents Abstract (in Chinese)------------------------------------------------------------Ⅰ Abstract (in English)------------------------------------------------------------Ⅳ CHAPTER 1 Introduction--------------------------------------------------------1 1.1 The motivation-----------------------------------------------------------------1 1.2 Overview of this dissertation------------------------------------------------7 CHAPTER 2 Theory------------------------------------------------------------19 2.1 The pyrolytic decomposition of SiH4 (Silane) and GeH4 (Germane) gas----------------------------------------------------------------------------19 2.2 Quantum Confinement Effect--------------------------------------------- 20 2.3 Photoluminescence (PL) spectroscopy-----------------------------------25 2.4 Fourier transformation infrared (FTIR) spectroscopy------------------28 2.5 Raman spectroscopy--------------------------------------------------------31 2.6 Time-Resolved Photoluminescence (TRPL) spectroscopy------------35 CHAPTER 3 Experimental Procedure----------------------------------------42 3.1 Laser-Assisted Chemical Vapor Deposition (LACVD) system-------42 3.2 Fabrication and analysis of SiNx films-----------------------------------46 3.3 Fabrication of SiNx-based electroluminescence device----------------47 3.4 Fabrication of SiNx-based memory device-------------------------------48 3.5 Fabrication and analysis of silicon carbide films-----------------------50 3.6 Fabrication of silicon carbide based EL device-------------------------51 3.7 Fabrication and analysis of GeOx films----------------------------------52 3.8 Fabrication of Ge-based EL device---------------------------------------53 3.9 Fabrication of GeOx-based memory device------------------------------55 CHAPTER 4 Experimental Results and Discussions-----------------------60 4.1 The analysis of the SiNx films using PL, FTIR, Raman, TRPL and TEM system------------------------------------------------------------------60 4.1.1 The results of PL measurement-------------------------------------60 4.1.2 The results of Raman measurement--------------------------------67 4.1.3 The results of TEM measurement----------------------------------69 4.1.4 The results of FTIR measurement----------------------------------76 4.1.5 The results of TRPL measurement---------------------------------79 4.2 The performances of SiNx-based EL device----------------------------81 4.2.1 Current-voltage characteristics-------------------------------------81 4.2.2 Electroluminescence characteristics-------------------------------83 4.3 The performances of SiNx-based memory device----------------------85 4.3.1 Capacitance-voltage characteristics--------------------------------85 4.3.2 Capacitance-time characteristics-----------------------------------89 4.4 The analysis of the silicon carbide films using PL, Raman, TRPL and FTIR system--------------------------------------------------------------101 4.4.1 The results of PL measurement-----------------------------------101 4.4.2 The results of TEM measurement---------------------------------104 4.4.3 The results of Raman measurement------------------------------107 4.4.4 The results of TRPL measurement--------------------------------108 4.4.5 The results of FTIR measurement--------------------------------109 4.5 The performances of silicon carbide based EL device----------------111 4.5.1 Current-voltage characteristics------------------------------------111 4.5.2 Electroluminescence characteristics------------------------------112 4.6 The analysis of the GeOx films using PL, FTIR, Raman, TRPL and TEM system---------------------------------------------------------------114 4.6.1 The results of Raman measurement------------------------------114 4.6.2 The results of TEM measurement---------------------------------116 4.6.3 The results of PL measurement------------------------------------118 4.6.4 The results of TRPL measurement--------------------------------119 4.6.5 The results of FTIR measurement--------------------------------121 4.7 The performances of Ge-based EL device------------------------------124 4.7.1 The results of Raman measurement------------------------------124 4.7.2 The results of TEM measurement---------------------------------125 4.7.3 The results of FTIR measurement--------------------------------125 4.7.4 Current-voltage characteristics------------------------------------127 4.7.5 The results of EL measurement-----------------------------------127 4.8 The performances of GeOx-based memory device--------------------130 4.8.1 Capacitance-voltage characteristics------------------------------130 4.8.2 Conductance-voltage characteristics-----------------------------134 4.8.3 Capacitance-time characteristics----------------------------------138 CHAPTER 5 Conclusions-----------------------------------------------------153 Future Work---------------------------------------------------------------------160 Figure Captions Fig. 2.1 The absorption patterns of (a) Silane and (b)Germane.-----------19 Fig. 2.2 The diagram of the relation between quantum well, quantum wire, quantum dot, and Fermi wavelength.-------------------------------24 Fig. 2.3 Density of states with the nanostruct (a) bulk material, (b) quantum well, (c) quantum wire, (d) quantum dot.---------------25 Fig. 2.4 Radiative recombination paths: (a) band-to-band (b) donor level to valence band (c) conduction band to acceptor level (d) nonradiative recombination via an intermediate state.-----------27 Fig. 2.5 Equipment setup of photoluminescence system.------------------28 Fig. 2.6 Schematic of a Fourier-transform spectroscopy.-------------------31 Fig. 2.7 Schematic diagram of the Raman Scattering process.------------34 Fig. 2.8 Schematic of a Raman spectroscopy.-------------------------------35 Fig. 2.9 A schematic configuration of the Time-Resolved PL system.---37 Fig. 3.1 He-Ne laser and CO2 laser coaxial optical path align into PECVD chamber.---------------------------------------------------------------43 Fig. 3.2 The LACVD deposition mechanism illustration for SiNx films.-------------------------------------------------------------------45 Fig. 3.3 The structure of the SiNx-based EL device.------------------------48 Fig. 3.4 The structure of the SiNx-based memory device.------------------49 Fig. 3.5 The structure of the silicon carbide based EL device-------------51 Fig. 3.6 The structure of the Ge-based EL device.--------------------------55 Fig. 3.7 Schematic cross-section of the GeOx-based memory cell -------58 Fig. 4.1 PL spectra of silicon nitride films deposited (a) without laser assistance and (b) with laser assistance for various NH3 gas flow rates.--------------------------------------------------------------------62 Fig. 4.2 PL spectra of silicon nitride films deposited without laser assistance for various NH3 gas flow rates.-----------------------63 Fig. 4.3 PL spectra of samples deposited at various (a) NH3 flow rates, (b) SiH4 flow rates and (c) laser power densities.--------------------66 Fig. 4.4 Raman spectra of samples deposited at various (a) NH3 flow rates, (b) SiH4 flow rates and (c) laser power densities.--------------68 Fig. 4.5 HRTEM images of the laser-assisted silicon nitride films deposited with SiH4 flow rates of 250 sccm and NH3 flow rates of (a)15sccm, (b)25 sccm, (c)35 sccm, and (d)45 sccm, respectively.-----------------------------------------------------------70 Fig. 4.6 (a) HRTEM image, (b) high-resolution lattice images, and (c) electron diffraction pattern of the laser-assisted silicon nitride films deposited with SiH4 and NH3 flow rates of 250 sccm and 55 sccm, respectively.-----------------------------------------------71 Fig. 4.7 PL peak energy and diameter of silicon nanoclusters as a function of NH3 flow rate--------------------------------------------------------71 Fig. 4.8 TEM images of silicon nanocluster embedded films deposited at (a) flow rate of SiH4 and NH3 being 250 and 50 sccm, respectively, and the laser power density of 2.02 W/cm2, (b) flow rate of SiH4 and NH3 being 200 and 50 sccm, respectively, and the laser power density of 2.02 W/cm2, (c) flow rate of SiH4 and NH3 being 250 and 50 sccm, respectively, and the laser power density of 2.82 W/cm2.--------------------------------------75 Fig. 4.9 Diameter and number density of Si nanoclusters in films deposited with various (a) NH3 flow rates, (b) SiH4 flow rates and (c) laser power densities.--------------------------------------76 Fig. 4.10 FTIR spectra of samples deposited at various (a) NH3 flow rates, (b) SiH4 flow rates and (c) laser power densities.--------------79 Fig. 4.11 The temporal evolution of the PL intensity for films deposited at various (a) NH3 flow rates, (b) SiH4 flow rates and (c) laser power densities.-----------------------------------------------------81 Fig. 4.12 The current-voltage characteristic of light-emitting device.----82 Fig. 4.13 The current-voltage characteristic of light-emitting device----83 Fig. 4.14 The current-voltage characteristic of light-emitting device----83 Fig. 4.15 The photoluminescence and electroluminescence spectra of light-emitting devices.-----------------------------------------------85 Fig. 4.16 C-V characteristics of the MIS device with different sweep voltage ranges. (a) For device with silicon nanoclusters of an average size 3.2 nm and (b) For device without silicon nanoclusters.----------------------------------------------------------87 Fig. 4.17 The charge retention characteristics of the MIS device with nanoclusters of an average size 3.2 nm under the charging conditions: (a) stress times 2 second and 4 second at the same stress voltage 20 V and (b) stress time 2 second at stress voltage 20 V and 16 second at 18 V, which produced roughly the same amount of charge storage in the devices.--------------------------94 Fig. 4.18 Schematic band diagrams for Si/SiNx/Si nanocluster structures under positive gate voltage. The nanoclusters embedded in the SiNx film are of the same size but with a shorter distance X1 in (a) and a larger one X2 in (b) apart from the silicon substrate.-------------------------------------------------------------94 Fig. 4.19 Schematic diagram of the evolution of the normalized amount of charges stored in the MIS structure with the charging time. The curve A and B correspond to the cases shown in Fig. 3 (a) and (b), respectively.-----------------------------------------------97 Fig. 4.20 Schematic band diagrams for Si/SiNx/Si nanocluster structures under positive gate voltage. The silicon nanoclusters in the SiNx film have the same separation to the substrate but with a larger size in (a) and a smaller size in (b).----------------------98 Fig. 4.21 The charge retention characteristics of the MIS devices with silicon nanoclusters of average sizes of 2.7 and 3.2 nm. The C-t curves were measured after stressing 4 seconds at 20 V and with the monitoring bias of 2.8 V and 4.2 V, respectively.-------------------------------------------------------100 Fig. 4.22 The charge retention characteristics for the MIS devices with the same silicon nitride layer of smaller average nanocluster size (2.7 nm), but with an additional SiO2 tunneling layer of thickness of 0, 1 and 2 nm, inserted between SiNX and Si substrate. The C-t curves were measured after stressing 4 seconds at 20 V and with the monitoring bias of 2.8 V.-----100 Fig. 4.23 Photoluminescence spectra measured at room and low temperature (10K) for samples deposited (a) without laser assistance and (b) with laser power density of 1.78W/cm2---104 Fig. 4.24 Photoluminescence spectra of films deposited with various laser power densities-----------------------------------------------------104 Fig. 4.25 TEM images of Si nanocluster embedded films deposited with laser power of (a) 1.78 W/cm2 and (b) 2.67 W/cm2-----------106 Fig. 4.26 Raman spectra of films deposited at various laser power densities--------------------------------------------------------------110 Fig. 4.27 The temporal evolution of the PL intensity detected at various photon energies as indicated by arrows in Fig. 4.22-----------111 Fig. 4.28 Fourier transformation infrared spectra of films deposited at various laser power densities-------------------------------------111 Fig. 4.29 The current-voltage characteristic of light-emitting device---113 Fig. 4.30 The photoluminescence and electroluminescence spectra of light-emitting devices.---------------------------------------------114 Fig. 4.31 Raman spectra of samples deposited at various laser powers.--------------------------------------------------------------116 Fig. 4.32 (a) HRTEM image, (b) high-resolution lattice image and (c) Electron diffraction pattern of the films deposited with laser power of 4 W/cm2.-------------------------------------------------118 Fig. 4.33 TEM images and SAED patterns of Ge nanocluster embedded films deposited with laser power of (a) 3W/cm2 and (b) 2W/cm2.------------------------------------------------------------118 Fig. 4.34 PL spectra of samples deposited at various laser powers.-----120 Fig. 4.35 The temporal evolution of the PL intensity detected at various photon energies as indicated by arrows in Fig. 4.24.--------121 Fig. 4.36 FTIR spectra of samples deposited (a) without laser assistance (b) at various laser powers.------------------------------------123 Fig. 4.37 Raman spectra of the Ge film deposited with CO2 laser assistance.--------------------------------------------------------124 Fig. 4.38 (a) TEM image, (b) high-resolution lattice image and (c) electron diffraction pattern of the Ge film deposited with CO2 laser assistance.--------------------------------------------------125 Fig. 4.39 FTIR spectrum of the Ge film deposited with and without CO2 laser assistance------------------------------------------------------126 Fig. 4.40 Current-voltage characteristics of the devices with and without Ge nanoclusters-embedded Ge films.-------------------------127 Fig. 4.41 The electroluminescence spectra of the devices with and without Ge nanoclusters-embedded Ge films measured at room temperature.-----------------------------------------------129 Fig. 4.42 The electroluminescence spectra of the devices with Ge nanoclusters-embedded Ge films measured at various temperatures.-----------------------------------------------------130 Fig. 4.43 C-V characteristics of the MOS samples (a) without (normal sample) and (b) with an inserted Ge-nanoclusters embedded GeOx film, measured under different sweep voltage ranges.---------------------------------------------------------------132 Fig. 4.44 (a) TEM image, (b) high-resolution lattice image and (c) electron diffraction pattern of Ge-nanocluster embedded GeOx films deposited by LACVD system.-----------------------------134 Fig. 4.45 Frequency-dependent C-V characteristics of (a) normal sample and (b) MOS structure containing Ge-nanoclusters embedded GeOx film under sweeping voltage from +10V to -10V.----135 Fig. 4.46 Frequency-dependent G-V characteristics of (a) normal sample and (b) MOS structure containing Ge-nanoclusters embedded GeOx film under sweeping voltage from +10V to -10V.-----136 Fig. 4.47 The charge retention characteristics of the MOS devices with Ge nanoclusters.----------------------------------------------------139

    Chapter 1
    References
    1. R. R. Koropecki, R. D. Arce and J. A. Schmidt, “Photo-oxidation effects in porous silicon luminescence”, Phys. Rev. B, vol. 69, no. 205317 (2004).
    2. J. Salonen, V. P. Lehto and E. Laine, “Photo-oxidation studies of porous silicon using a microcalorimetric method”, J. Appl. Phys., vol. 86, pp. 5888-5893 (1999).
    3. H. Mizuno, H. Koyama and N. Koshida, “Photo-assisted continuous tuning of photoluminescence spectra of porous silicon”, Thin Solid Films, vol. 297, pp. 61-63 (1997).
    4. A. M. Sánchez, J. Barreto, C. Domínguez, M. A. Mijares, M. Perálvarez, B. Garrido and J. A. López, “DC and AC electroluminescence in silicon nanoparticles embedded in silicon-rich oxide films”, Nanotechnology, vol. 21, no. 085710 (2010).
    5. G. K. Wong, H. Wong and V. Filip, “Photoluminescence of Silicon Nanocrystals Embedded in Silicon Oxide”, J. Nanosci. Nanotechnol., vol. 9, pp. 1272-1276 (2009).
    6. J. Barreto, J. A. Rodriguez, M. Perálvarez, A. Morales, B. Garrido and C. Domínguez, “Photoluminescence characterization of silicon nanostructures embedded in silicon oxide”, Superlattices Microstruct., vol. 43, pp. 588-593 (2008).
    7. B. H. Kim, R. F. Davis and S. J. Park, “Optical property of silicon quantum dots embedded in silicon nitride by thermal annealing”, Thin Solid Films, vol. 518, pp. 1744-1746 (2010).
    8. B. Rezgui, A. Sibai, T. Nychyporuk, M. Lemiti and G. Brémond, “Photoluminescence and optical absorption properties of silicon quantum dots embedded in Si-rich silicon nitride matrices”, J. Lumines., vol. 129, pp. 1744-1746 (2009).
    9. I. O. Parm and J. S. Yi, “Exciton luminescence from silicon nanocrystals embedded in silicon nitride film”, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 134, pp. 130-132 (2006).
    10. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Appl. Phys. Lett., vol. 57, pp. 1046-1048 (1990).
    11. L. D. Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures”, Appl. Phys. Lett., vol. 88, no. 183103 (2006).
    12. Y. N. Novikov, “Non-volatile memory based on silicon nanoclusters”, Semiconductors, vol. 43, pp. 1040-1045 (2009).
    13. D. Cha, J. H. Shin, S. Park, E. Lee, Y. Park, Y. Park, I. K. Yoo, K. S. Seol and S. H. Choi “High trap density and long retention time from self-assembled amorphous Si nanocluster floating gate nonvolatile memory”, Appl. Phys. Lett., vol. 89, no. 243513 (2006).
    14. X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz and M. A. Green, , “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films”, Nanotechnology, vol. 20, no. 485703 (2009).
    15. H. Choi, S. Choi, T. W. Kim, T. Lee and H. Hwang, Nano-scale memory characteristics of silicon nitride charge trapping layer with silicon nanocrystals”, Jpn. J. Appl. Phys., vol. 45, pp. L807-L809 (2006).
    16. X. Huang, L. Wu, M. Dai, P. Han, L. Yu, Z. Ma, Y. Liu, W. Li, and K. Chen, “Charging and Coulomb blockade effects of the nc-Si embedded in SiNx double-barrier structures”, J. Non-Cryst. Solids, vol. 352 pp. 1126-1129 (2006).
    17. N. Nikolaou, P. Dimitrakis, P. Normand, S. Schamm, C. Bonafos, G.
    B. Assayag, A. Mouti and V. I. Sougleridis, “Temperature-dependent low electric field charging of Si nanocrystals embedded within oxide-nitride-oxide dielectric stacks”, Nanotechnology, vol. 20, no. 305704 (2009).
    18. Y. H. Wu, C. K. Kao, C. Y. Wang, Y. S. Lin, C. M. Chang, C. H. Chuang, C. Y. Lee, C. M. Kuo, and A. Ku, “High-density silicon nanocrystal formed on nitrided tunnel oxide for nonvolatile memory application”, Electrochem. Solid State Lett., vol. 11, pp. H131-H134 (2008).
    19. C. Y. Ng, T. P. Chen, J. I. Wong, M. Yang, T. S. Khor, C. L. New, C. M. Li, A. D. Trigg and S. Li, “Performance of silicon nanocrystal non-volatile memory devices under various programming mechanisms”, J. Nanosci. Nanotechnol., vol. 7, pp. 329-334 (2007).
    20. C. Y. Ng, T. P. Chen, D. Sreeduth, Q. Chen, L. Ding and A. Du, “Silicon nanocrystal-based non-volatile memory devices”, Thin Solid Films, vol. 504, pp. 25-27 (2006).
    21. S. Huang, S. Banerjee, R. T. Tung and S. Oda, “Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance–voltage and conductance-voltage measurements”, J. Appl. Phys., vol. 93, pp. 576-581 (2003).
    22. W. Guan, S. Long, M. Liu, Z. Li, Y. Hu and Q. Liu, “Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide”, J. Phys. D: Appl. Phys., vol. 40, pp. 2754-2758 (2007).
    23. D. Nesheva, N. Nedev, E. Manolov, I. Bineva and H. Hofmeister, “Memory effect in MIS structures with amorphous silicon nanoparticles embedded in ultra thin SiOx matrix”, J. Phys. Chem. Solids, vol. 68, pp. 725-728 (2007).
    24. Y. Batra, D. Kabiraj and D. Kanjilal, “Charge retention and optical properties of Ge nanocrystals embedded in GeO2 matrix”, Solid State Commun., vol. 143, pp. 213-216 (2007).
    25. G. Chang, F. Ma, D. Ma, and K. Xu, “Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide”, Nanotechnol., vol. 21, no. 465605 (2010).
    26. Z. Xia and S. Huang, “Structural and photoluminescence properties of silicon nanocrystals embedded in SiC matrix prepared by magnetron sputtering”, Solid State Commun., vol. 150, pp. 914-918 (2010).
    27. R. Huang, L. Ma, Y. Du, L. Gao, C. Li, C. Yu, J. Ye, and Z. Cao, “Effect of well confinement on photoluminescence features from silicon nanoparticles embedded in an SiC/SiNx multilayered structure”, Nanotechnol., vol. 19, no. 255402 (2008).
    28. J. Y. Fan, X. L. Wu, and Paul K. Chu, “Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties”, Prog. Mater. Sci., vol. 51, pp. 983-1031 (2006).
    29. W. B. Steward and H. H. Nielsen, “The Infrared Absorption Spectrum of Silane”, Phys. Rev., vol. 47, pp. 828-832 (1935).
    30. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices”, Appl. Phys. Lett., vol. 59, pp. 3168-3170 (1991).
    31. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon”, J. Appl. Phys., vol. 82, pp. 909-965 (1997).
    32. M. Kanoun, C. Busseret, A. Poncet, A. Souifi, T. Baron, and E. Gautier, “Electronic properties of Ge nanocrystals for non volatile memory applications”, Solid-State Electron., vol. 50, pp. 1310-1314 (2006).
    33. S. Duguay, J. J. Grob, A. Slaoui, Y. Le Gall, and M. Amann-Liess, “Structural and electrical properties of Ge nanocrystals embedded in SiO2 by ion implantation and annealing”, J. Appl. Phys., vol. 97, no. 104330 (2005).
    34. A. Kanjilal, J. L. Hansen, P. Gaiduk, A. N. Larsen, N. Cherkashin, A. Claverie, P. Normand, E. Kapelanakis, D. Skarlatos, and D. Tsoukalas, ”Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 82, pp. 1212-1214 (2003).
    35. B. H. Kim, C. H. Cho, T. W. Kim, N. M. Parka, G. Y. Sung and S. J. Park, “Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4”, Appl. Phys. Lett., vol. 86, no. 091908 (2005).
    36. L. D. Negro, J. H.Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures”, Appl. Phys. Lett., vol. 88, no. 183103 (2006).
    37. N. M. Park, C. J. Choi, T. Y. Seong and S. J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride”, Phys. Rev. Lett. vol. 86, pp. 1355-1357(2001).
    38. V. A. Volodin, M. D. Efremov, V. A. Gritsenko, and S. A. Kochubei, “Raman study of silicon nanocrystals formed in SiNx films by excimer laser or thermal annealing”, Appl. Phys. Lett., vol. 73, pp. 1212-1214 (1998).
    39. G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh, “Physics and Device Structures of Highly Efficient Silicon Quantum Dots Based Silicon Nitride Light-Emitting Diodes”, IEEE. Selec. Top. Quantum Electron., vol. 12, pp. 1545-1555 (2006).
    40. A. Kanjilal, J. Lundsgaard Hansen, P. Gaiduk, A. N. Larsen, N. Cherkashin, A. Claverie, P. Normand, E. Kapelanakis, D. Skarlatos and D. Tsoukalas, “Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 82, pp. 1212-1214 (2003).
    41. B. Park, S. Choi, H. R. Lee, K. Cho and S. Kim, “Memory characteristics of MOS capacitors with Ge nanocrystal-embedded Al2O3 gate layers”, Solid State Commun., vol. 143, pp. 550-552 (2007).
    42. A. El Hdiy, K. Gacem, M. Troyon, A. Ronda, F. Bassani and I. Berbezier, “Germanium nanocrystal density and size effects on carrier storage and emission”, J. Appl. Phys., vol. 104, no. 063716 (2008).
    43. K. Gacem, A. El Hdiy, M. Troyon, I. Berbezier, P. D. Szkutnik, A. Karmous and A. Ronda, “Memory and Coulomb blockade effects in germanium nanocrystals embedded in amorphous silicon on silicon dioxide”, J. Appl. Phys., vol. 102, no. 093704 (2007).
    44. S. Duguay, J. J. Grob, A. Slaoui, Y. L. Gall and M. A. Liess, “Structural and electrical properties of Ge nanocrystals embedded in SiO2 by ion implantation and annealing”, J. Appl. Phys., vol. 97, no. 104330 (2005).

    Chapter 2
    References
    1. T. F. Deutsch, “Infrared laser photochemistry of silane,”, J. Chem. Phys., vol. 70, pp. 1187-1192 (1979).
    2. W. B. Steward and H. H. Nielsen, “The Infrared Absorption Spectrum of Silane”, Phys. Rev., vol. 47, pp. 828-832 (1935).
    3. W. B. Steward and H. H. Nielsen, “The Infrared Absorption Spectrum of Germane”, Phys. Rev., vol. 48, pp. 861-864 (1935).
    4. H. S. Tsai, G. J. Jaw, S. H. Chang, C. C. Cheng, C. T. Lee and H. P. Liu, “Laser-assisted plasma-enhanced chemical vapor deposition of silicon nitride thin film”, Surface and Coatings Technology, vol. 132, pp. 158-162 (2000).
    5. H. S. Tsai, H. C. Chiu, S. H. Chang, C. C. Cheng, C. T. Lee and H. P. Liu, “CO2-laser-assisted plasma-enhanced chemical vapor deposition of silicon dioxide thin film”, Jpn. J. Appl. Phys., vol. 40, pp. 3093-3095 (2001).
    6. C. T. Lee and C. H. Lin, “Si Nanocrystals Embedded in Si Suboxide Matrix Grown by Laser-Assisted Chemical Vapor Deposition at Room Temperature”, Jpn. J. Appl. Phys., vol. 43, pp. 2793-2794 (2004).
    7. C. T. Lee, C. H. Lin and T. H. Lee, “Photoluminescence degradation and passivation mechanisms of Si nanoclusters in a silicon oxide matrix”, Jpn. J. Appl. Phys., vol. 44, pp. 4240-4244 (2005).
    8. C. T. Lee, J. H. Cheng and H. Y. Lee, “Crystalline SiGe films grown on Si substrates usinglaser-assisted plasma-enhanced chemical vapor deposition at low temperature”, Appl. Phys. Lett., vol. 91, no. 091920 (2007).
    9. L. W. Lai, H. Y. Lee, J. H. Cheng and and C. T. Lee, “Investigation of laser-assisted microcrystalline SiGe films deposited at low temperature”, J. Electronic Mater., vol. 37, pp. 167-171 (2008).
    10. C. F. Landes, S. Link, M. B. Mohamed, B. Nikoobakht and M. A. E. Sayed , “Some properties of spherical and rod-shaped semiconductor and metal nanocrystals”, Pure Appl. Chem., vol. 74, pp. 1675-1692 (2002).
    11. M. B. Mohamed, C. Burda and M. A. El-Sayed, “Shape Dependent Ultrafast Relaxation Dynamics of CdSe Nanocrystals: Nanorods vs Nanodots”, Nano Lett., vol. 1, pp. 589-593 (2001).
    12. A. N. Baranov, G. N. Panin, T. W. Kang and Y. J. Oh, “Growth of ZnO nanorods from a salt mixture”, Nanotechnology, vol. 16, pp. 1918-1923 (2005).
    13. Y. L. Wu, A. I. Y. Tok, F. Y. C. Boey, X.T. Zeng and X.H. Zhang, “Surface modification of ZnO nanocrystals”, Appl. Surf. Sci., vol. 253, pp. 5473-5479 (2007).
    14. G. Ledoux, J. Gong, F. Huiskena, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement”, Appl. Phys. Lett., vol. 80, pp. 4834-4836 (2002).
    15. X. W. Dua, L. Y. Liu, P. Yao and L. Cui, “Intrinsic ultraviolet light-emission from Si nanocrystals prepared by reactive sputtering”, J. Appl. Phys., vol. 100, no. 076102 (2006).
    16. R. A. Stradling and P. C. Klipstein, “Growth and Characterisation of Semiconductors”, Hilger (1990).
    17. S. Perkowitz, “Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy”, Academic Press (1993).
    18. M. C. Jones and D.C. Palmer, “A technique for the measurement of spectral reflectances at low temperatures in the infrared and far infrared”, AIAA (1968).
    19. “Advances in near-infrared measurements”, Conn. : JAI Press (1993).
    20. T. Suzuki, A. Gomyo, S. Iijima, K. Kobayashi, S. Kawata, I. Hino and T. Yuasa, , “Band-Gap Energy Anomaly and Sublattice Ordering in GaInP and AlGaInP Grown by Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys., vol. 27, pp. 2098 -2106(1988).

    CHAPTER 3
    References
    1. C. T. Lee, and C. H. Lin, “Si nanocrystals embedded in Si suboxide matrix Grown by laser-assisted chemical vapor deposition at room temperature”, Jpn. J. Appl. Phys., vol. 43, pp. 2793-2794 (2004).
    2. C. T. Lee, Y. F. Chen, and C. H. Lin, “Phase-separated Si nanoclusters from Si oxide matrix grown by laser-assisted chemical vapor deposition”, Nanotech., vol. 20, no. 025702 (2009).
    3. W. B. Steward and H. H. Nielsen, “The Infrared Absorption Spectrum of Germane”, Phys. Rev., vol. 48, pp. 861-864 (1935).
    4. C. T. Lee, and C. H. Lin, “Si nanocrystals embedded in Si suboxide matrix grown by laser-assisted chemical vapor deposition at room temperature”, Jpn. J. Appl. Phys., vol. 43, pp. 2793-2794 (2004).

    CHAPTER 4
    References
    1. A. Irrera, F. Iacona, G. Franzò, S. Boninelli, D. Pacifici, M. Miritello, C. Spinella, D. Sanfilippo, G. Di Stefano, P.G. Fallica and F. Priolo, “Correlation between electroluminescence and structural properties of Si nanoclusters”, Opt. Mater., vol. 27, pp. 1031-1040 (2005).
    2. C. D. Presti, A. Irrera and G. Franzò, “Photonic-crystal silicon-nanocluster light-emitting device”, Appl. Phys. Lett., vol. 88, no. 033501 (2006).
    3. B. H. Kim, C. H. Cho and T. W. Kim, “Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4”, Appl. Phys. Lett., vol. 86, no. 091908 (2005).
    4. Y. Q. Wang, Y. G. Wang, L. Cao and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride”, Appl. Phys. Lett., vol. 83, pp. 3474-3476 (2003).
    5. C. M. Mo, L. Zhang, C. Xie and Tao Wang, “Luminescence of nanometer-sized amorphous silicon nitride solids”, J. Appl. Phys., vol. 73, pp. 5185-5188 (1993).
    6. L. D. Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson and G. Galli, “Photonic-crystal silicon-nanocluster light-emitting device”, Appl. Phys. Lett., vol. 88, no. 183103 (2006).
    7. C. M. Mo, L. Zhang, C. Xie and T. Wang, “Luminescence of nanometer‐sized amorphous silicon nitride solids”, J. Appl. Phys., vol. 73, pp. 5185-5188 (1993).
    8. Y. Z. Liu, Y. Q. Zhou, W. Q. Shi, L. L. Zhao, B. Y. Sun and T. C. Ye, “Study of photoluminescence spectra of Si-rich SiNx films”, Mater. Lett., vol. 58, pp. 2397-2400 (2004).
    9. V. A. Gritsenko, K. S. Zhuravlev, A. D. Milov, H. Wong, R. W. M. Kwok and J. B. Xu, “Silicon dots/clusters in silicon nitride:photoluminescence and electron spin resonance”, Thin Solid Films, vol. 353, pp. 20-24 (1999).
    10. G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi and R. S.La, “Modified Raman confinement model for Si nanocrystals”, Phys. Rev. B., vol. 73, no. 033307 (2006).
    11. P. Mishra and K. P. Jain, “Raman, photoluminescence and optical absorption studies on nanocrystalline silicon”, Mater. Sci. & Eng. B, vol. 95, pp. 202-213 (2002).
    12. T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sunga, Y. W. Ok, T. Y. Seong and C. J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films”, Appl. Phys. Lett., vol. 85, pp.5355-5357 (2004).
    13. T. W. Kim, C. H. Cho, B. H. Kim and S. J. Park, “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3”, Appl. Phys. Lett., vol. 88, no.123102 (2006).
    14. N. M. Park, C. J. Choi, T. Y. Seong and S. J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride”, Phy. Rev. Lett., vol.86, pp. 1355-1357 (2001)
    15. D. Das and A. Samanta, “Photoluminescent silicon quantum dots in core/shell configuration: synthesis by low temperature and spontaneous plasma processing”, Nanotechnology, vol.22, no. 055601(2011).
    16. D. J. Lockwood, Z. H. Lu and J. M. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices”, Phy. Rev. Lett., vol.76, pp. 539-541 (1996).
    17. N. M. Park, S. H. Kim, G. Y. Sung and S. J. Park, “Growth and size
    control of amorphous silicon quantum dots using SiH4/N2 plasma”, Chem. Vap. Deposition., vol. 8, pp. 254-256 (2002).
    18. H. S. Tsai, G. J. Jaw, S. H. Chang, C. C. Cheng, C. T. Lee and H. P. Liu, “Laser-assisted plasma-enhanced chemical vapor deposition of silicon nitride thin film”, Sur. & Coat. Technol., vol. 132, pp. 158-162 (2000).
    19. W. B. Steward and H. H. Nielsen, “The infrared absorption spectrum of Silane”, Phys. Rev., vol. 47, pp. 828-832 (1935).
    20. P. S. Chen, T. H. Lee, L. W. Lai and and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer”, J. Appl. Phys., vol. 101, no. 024507 (2007).
    21. K. Watanabe, K. Sawada, M. Koshiba, M. Fujii and S. Hayashi, “Photoluminescence decay-dynamics of Si nanoparticles prepared by pulsed laser ablation”, Appl. Sur. Sci., vol. 197-198, pp. 635-638 (2002).
    22. G. G. Qin, “Extended quantum confinement/luminescence center model for photoluminescence from oxidized porous silicon and nanometer-si-particle- or nanometer-ge-particle-embedded silicon oxide films”, Mater. Res. Bull., vol. 33, pp. 1857-1866 (1998).
    23. G. G. Qin, Y. M. Huang, J. Lin, L. Z. Zhang, B. Q. Zong and B. R. Zhang, “Electroluminescence from Au/native oxide/p-Si and its correlation to that from Au/porous Si”, Solid State Commun., vol. 94, pp. 607-612 (1995).
    24. N. R. J. Poolton and Y. Cros, “Luminescence excitation and bleaching involving dangling bonds in silicon-nitride”, J. Phys. I, vol. 1, pp. 1335-1345 (1991).
    25. J. Y. Yang, J. H. Kim, W. J. Choi, Y. H. Do, C. O. Kim, and J. P. Hong, “Enhanced electrical characteristics of Au nanoparticles embedded in high-k HfO2 matrix”, J. Appl. Phys., vol. 100, no. 066102 (2006).
    26. B. Park, S. Choi, H. R. Lee, K. Cho and S. Kim, “Memory characteristics of MOS capacitors with Ge nanocrystal-embedded Al2O3 gate layers”, Solid State Commun., vol. 143, pp. 550-552 (2007).
    27. S. Tiwari, F. Rana and H. Hanafi, “A silicon nanocrystals based memory”, Appl. Phys. Lett., vol. 68, pp. 1377-1379 (1996).
    28. M. Kanoun, C. Busseret and A. Poncet, “Electronic properties of Ge nanocrystals for non volatile memory applications”, Solid-State Electron., vol. 50, pp. 1310-1314 (2006).
    29. H. Choi, S. Choi, T. W. Kim, T. Lee and H. Hwang, Nano-Scale Memory Characteristics of Silicon Nitride Charge Trapping Layer with Silicon Nanocrystals”, Jpn. J. Appl. Phys., vol. 45, pp. L807- L809 (2006).
    30. S. Duguay, J. J. Grob, A. Slaoui, Y. L. Gall, and M. A. Liess, “Structural and electrical properties of Ge nanocrystals embedded in SiO2 by ion implantation and annealing”, J. Appl. Phys., vol. 97, no. 104330 (2005).
    31. C. T. Lee, Y. F. Chen and C. H. Lin, “Phase-separated Si nanoclusters form Si oxide matrix grown by laser-assiated chemical vapor deposition”, Nanotechnol., vol. 20, 025702 (2009).
    32. S. Huang, S. Banerjee, R. T. Tung and S. Oda, “Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance–voltage and conductance–voltage measurements”, J. Appl. Phys., vol. 93, pp. 576-581 (2003).
    33. D. Nesheva, N. Nedev, E. Manolov, I. Bineva and H. Hofmeister, “Memory effect in MIS structures with amorphous silicon nanoparticles embedded in ultra thin SiOx matrix”, J. Phys. Chem. Solids, vol. 68, pp. 725-728 (2007).
    34. Y. Batra, D. Kabiraj and D. Kanjilal, “Charge retention and optical properties of Ge nanocrystals embedded in GeO2 matrix”, Solid State Commun., vol. 143, pp. 213-216 (2007).
    35. D. A. Neamen, Semiconductor physics and devices, McGraw-Hill, p. 42 (2003).
    36. X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix”, Phys. Rev. B, vol. 72, no. 195313 (2005).
    37. I. Kamata, X. Zhang, and H. Tsuchida, “Photoluminescence of Frank-type defects on the basal plane in 4H–SiC epilayers”, Appl. Phys. Lett., vol. 97, no. 172107 (2010).
    38. G. Feng, J. Suda, and T. Kimoto, “Characterization of stacking faults in 4H-SiC epilayers by room-temperature microphotoluminescence mapping”, Appl. Phys. Lett., vol. 92, no. 221906 (2008).
    39. T. C. Tsai, L. R. Lou, and C. T. Lee, “Influence of Deposition Conditions on Silicon Nanoclusters in Silicon Nitride Films Grown by Laser-Assisted CVD Method”, IEEE Trans. Nanotechnol., vol. 10, pp. 197-202 (2011).
    40. F. Delachat, M. Carrada, G. Ferblantier, J. J. Grob, A. Slaoui1 and H. Rinnert, “The structural and optical properties of SiO2/Si rich SiNx multilayers containing Si-ncs”, Nanotechnol., vol. 20, no. 275608 (2009).
    41. S. K. Gupta and P. K. Jha, Solid State Commun., “Modified phonon confinement model for size dependent Raman shift and linewidth of silicon nanocrystals”, vol. 149, pp. 1989-1992 (2009).
    42. C. T. Lee, Y. F. Chen, and C. H. Lin, “Phase-separated Si nanoclusters from Si oxide matrix grown by laser-assisted chemical vapor deposition”, Nanotechnol., vol. 20, no. 025702 (2009).
    43. K. Watanabe, K. Sawada, M. Koshiba, M. Fujii, and S. Hayashi, “Photoluminescence decay-dynamics of Si nanoparticles prepared by pulsed laser ablation”, Appl. Surf. Sci., vol. 197-198, pp. 635-638 (2002).
    44. Q. Cheng, S. Xu, J. D. Long, Z. H. Ni, A. E. Rider, and K. Ostrikov, “High-rate, low-temperature synthesis of composition controlled hydrogenated amorphous silicon carbide films in low-frequency inductively coupled plasmas”, J. Phys. D: Appl. Phys., vol. 41, no. 055406 (2008).
    45. J. Xu, L. Yang, Y. Rui, J. Mei, X. Zhang, W. Li, Z. Ma, L. Xu, X. Huang, and K. Chen, “Photoluminescence characteristics from amorphous SiC thin films with various structures deposited at low temperature”, Solid State Commun., vol. 133, pp. 565-568 (2005).
    46. W. B. Steward and H. H. Nielsen, “The Infrared Absorption Spectrum of Silane”, Phys. Rev., vol. 47, pp. 828-832 (1935).
    47. M. Ardyanian, H. Rinnert, X. Devaux and M. Vergnat, “Structure and photoluminescence properties of evaporated GeOx thin films”, Appl. Phys. Lett., vol. 89, no. 011902 (2006).
    48. G. V. M. Williams, A. Bittar and H. J. Trodahl, “Crystallization and diffusion in progressively annealed a-Ge/SiOx superlattices”, J. Appl. Phys., vol. 67, pp. 1874-1878 (1990).
    49. G. Kartopu, S. C. Bayliss, R. E. Hummel and Y. Ekinci, “Simultaneous micro-Raman and photoluminescence study of spark-processed germanium: Report on the origin of the orange photoluminescence emission band”, J. Appl. Phys., vol. 95, pp. 3466-3472 (2004).
    50. M. Ardyanian, H. Rinnert, X. Devaux, and M. Vergnat, “Structure and photoluminescence properties of evaporated GeOx thin films”, Appl. Phys. Lett., vol. 89, no. 011902 (2006).
    51. Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo, “Quantum confinement in germanium nanocrystals”, Appl. Phys. Lett., vol.77, pp. 1182-1184 (2000).
    52. K. Watanabe, K. Sawada, M. Koshiba, M. Fujii, and S. Hayashi, “Photoluminescence decay-dynamics of Si nanoparticles prepared by pulsed laser ablation”, Appl. Surf. Sci., vol. 197-198, 635 (2002).
    53. S. Y. Ren, “Quantum confinement in semiconductor Ge quantum dots”, Solid State Commun., vol. 102, pp. 479-484 (1997).
    54. M. Ardyanian, H. Rinnert, and M. Vergnat, “Influence of hydrogenation on the structure and visible photoluminescence of germanium oxide thin films”, J. Lumines., vol. 129, pp. 729-733 (2009).
    55. P. J. Wolf, T. M. Christensen, N. G. Coit and R.W. Swinford, “Thin film properties of germanium oxide synthesized by pulsed laser sputtering in vacuum and oxygen environments”, J. Vac. Sci. Technol. A, vol. 11, pp. 2725-2732 (1993).
    56. G. Kartopu, S. C. Bayliss, R. E. Hummel, and Y. Ekinci, “Simultaneous micro-Raman and photoluminescence study of spark-processed germanium: Report on the origin of the orange photoluminescence emission band”, J. Appl. Phys., vol. 95, pp. 3466-3472 (2004).
    57. M. Ardyanian, H. Rinnert, X. Devaux, and M. Vergnat, “Structure and photoluminescence properties of evaporated GeOx thin films”, Appl. Phys. Lett., vol. 89, no. 011902 (2006).
    58. M. Gazicki, H. Szymanowski, J. Tyczkowski, L. Malinovský, J. Schalko, and W. Fallmann, “Chemical bonding in thin Ge/C films deposited from tetraethylgermanium in an r.f. glow discharge-an FTIR study”, Thin Solid Films, vol. 256, pp. 31-38 (1995).
    59. D. J. DiMaria, J. R. Kirtley, E. J. Pakulis, D. W. Dong, T. S. Kuan, F. L. Pesavento, T. N. Theis, J. A. Cutro, and S. D. Brorson, “Electroluminescence studies in silicon dioxide films containing tiny silicon islands”, J. Appl. Phys., vol. 56, pp. 401-415 (1984).
    60. X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix”, Phys. Rev. B, vol. 72, no. 195313 (2005).
    61. L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium”, Phys. Rev. B, vol. 30, pp. 1979-1991 (1984).
    62. J. Y. Yang, J. H. Kim, W. J. Choi, Y. H. Do, C. O. Kim, and J. P. Hong, “Enhanced electrical characteristics of Au nanoparticles embedded in high-k HfO2 matrix”, J. Appl. Phys., vol. 100, no. 066102 (2006).
    63. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe´, and K. Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett., vol. 68, pp. 1377-1379 (1996).
    64. H. R. Lee, S. Choi, K. Cho, and S. Kim, “Capacitance-voltage characteristics of MOS capacitors with Ge nanocrystals embedded in ZrO2 gate material”, Thin Solid Films, vol. 516, pp. 412-416 (2007).
    65. H. Harris, N. Biswas, H. Temkin, S. Gangopadhyay, and M. Strathman, “Plasma enhanced metalorganic chemical vapor deposition of amorphous aluminum nitride”, J. Appl. Phys., vol. 90, pp. 5825-5831 (2001).
    66. N. Biswas, H. R. Harris, X. Wang, G. Celebi, H. Temkin, and S. Gangopadhyay, “Electrical properties of fluorinated amorphous carbon films”, J. Appl. Phys., vol. 89, pp. 4417-4421 (2001).
    67. E. H. Nicollian and J. R. Brews, MOS Physics and Technology (Wiley, New York, 1982).
    68. S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance–voltage and conductance–voltage measurements”, J. Appl. Phys., vol. 93, pp. 576-581 (2003).

    下載圖示 校內:2016-09-14公開
    校外:2016-09-14公開
    QR CODE