簡易檢索 / 詳目顯示

研究生: 陳螢萱
Chen, Ying-Xuan
論文名稱: 應用晶格波茲曼法於微射出成型之研究
Application of Lattice Boltzmann Method in Free Surface Flow Simulation of Micro Injection Molding
指導教授: 楊文彬
Young, Wen-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 105
中文關鍵詞: 晶格波茲曼法微射出成型單向自由表面高普朗特數
外文關鍵詞: Lattice Boltzmann Method, Micro injection molding, Free surface flow, High Prandtl number.
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用晶格波茲曼法(Lattice Boltzmann Method,LBM),晶格波茲曼法是近年來具前瞻性的數值運算方法,其為介於巨觀與微觀尺度間的介觀尺度模擬方法,適於模擬流場在微小模型中的情形,且其擁有較易模擬兩相流的優點,因此本研究將其應用於微射出成型中的填充過程上。本文主要分為兩個部分,一為引入單相自由表面(Free surface)於晶格波茲曼法中,自由表面可模擬氣相與液相之間的介面現象,因此用此優點模擬出塑料與空氣分離的介面流動現象。二為於熱晶格波茲曼法(Thermal Lattice Boltzmann Method,TLBM)中引入自由表面且模擬溫度場,但由於熱晶格波茲曼法本身的限制,其無法模擬具高普朗特數的流場,因此本文同時分析不同普朗特數下高黏度流體的熱傳問題。

    The Lattice Boltzmann Method is a promising numerical method developed in recent years. It is suitable for simulating the flow field in a micro-scale model. Lattice Boltzmann Method has many advantages as it is easy to model the problems of the multi-phase flow, flow with surface tension, flow in porous medias, etc. In this study, we apply it to simulate the behavior of mold filling process in micro injection molding.
    This study can be divided into two parts. In the first part, we adopt an algorithm to perform free surface flow simulations with the Lattice Boltzmann Method. The method of Free Surface Method can handle the complex interaction between gas and liquid phases. We use this feature to simulate the interface between polymer and gas. In the second part, we combine free surface method and Thermal Lattice Boltzmann Method to analyze the temperature variation in the filling flow. Due to some restrictions in Thermal Lattice Boltzmann Method model, e.g., high Prandtl number and high viscosity problems, we introduced a new parameter into the Modified Lattice Boltzmann scheme for the simulations.

    中文摘要 ii 致謝 vii 目錄 viii 表目錄 xi 圖目錄 xii 第一章、 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 1-3 文獻回顧 4 1-3-1 晶格波茲曼法之相關文獻 4 1-3-2 熱晶格波茲曼法之相關文獻 7 1-3-3 自由表面的LBM研究發展 9 1-4 本文架構 12 第二章、 晶格波茲曼法理論 13 2-1 晶格波茲曼法簡介 13 2-2 連續波茲曼方程式與晶格波茲曼方程式 14 2-2-1 晶格波茲曼法的數值求解 16 2-3 晶格波茲曼的速度模型 19 2-3-1 D2Q9模型 19 2-4 晶格波茲曼的熱模型 31 2-4-1 熱晶格波茲曼模型 31 2-4-2 修改熱晶格波茲曼格式 38 2-5 晶格波茲曼法的邊界處理 42 2-5-1 反彈邊界條件 42 2-5-2 速度與壓力邊界條件 45 2-5-3 熱模型的邊界條件 48 2-6 晶格波茲曼法的單位轉換 50 第三章、 自由表面的模擬模型 57 3-1 單相自由表面LBM 57 3-1-1 重建分布函數 60 3-1-2 介面移動量的計算 61 3-1-3 格點標示重新初始化 63 3-1-4 自由表面的速度場邊界處理 66 3-2 熱模型於自由表面LBM 68 第四章、 數值模擬與結果討論 70 4-1 速度場數值模擬 70 4-1-1 速度場程式驗證 71 4-1-2 自由表面之流場驗證 74 4-2 自由表面LBM在射出成型之應用 81 4-2-1 參數模擬設計 82 4-2-2 LBM模擬結果 84 4-3 溫度場數值模擬 87 4-3-1 溫度場程式驗證 88 4-3-2 溫度場結果與討論 91 第五章、 結論與展望 101 5-1 全文結論 101 5-2 研究展望 102 第六章、 參考文獻 103

    [1] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, 2001.
    [2] G. R. McNamara and G. Zanetti, "Use of the Boltzmann equation to simulate lattice gas automata," Phys Rev Lett, vol. 61, pp. 2332-2335, Nov 14 1988.
    [3] H. Chen, S. Chen, and W. H. Matthaeus, "Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method," Physical Review A, vol. 45, pp. R5339-R5342, 1992.
    [4] Y. H. Qian and S. A. Orszag, "Lattice BGK Models for the Navier-Stokes Equation: Nonlinear Deviation in Compressible Regimes," EPL (Europhysics Letters), vol. 21, p. 255, 1993.
    [5] P. L. Bhatnagar, E. P. Gross, and M. Krook, "A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems," Physical Review, vol. 94, pp. 511-525, 1954.
    [6] Ziegler, "Boundary conditions for lattice Boltzmann simulations," 1993.
    [7] P. A. Skordos, "Initial and boundary conditions for the lattice Boltzmann method," Physical Review E, vol. 48, pp. 4823-4842, 1993.
    [8] S. C. David R. Noble, John G. Georgiadis, Richard O. Buckius, "A consistent hydrodynamic boundary condition for the lattice Boltzmann method," Physics of Fluids, vol. 7, pp. 203-209, 1995.
    [9] M. Y. Takaji Inamuro, and Fumimaru Ogino, "A non slip condition for lattice boltzmann simulation," Physics of Fluids, 1995.
    [10] S. C. a. D. Martínez, "On boundary conditions in lattice Boltzmann methods " Physics of Fluids, vol. 8, pp. 2527-2536, 1996.
    [11] X. H. Qisu Zou "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model," 1997.
    [12] Y.-S. H. a. C.-L. C. Shing-Cheng Chang, "Lattice Boltzmann simulation of fluid flows with fractal geometry An unknown-index algorithm," 2011.
    [13] Shing-ChengChang, "Lectures for the Lattice Boltzmann Method," Department of Mechanical Engineering, NCKU, Taiwan2016.
    [14] F. J. Alexander, S. Chen, and J. D. Sterling, "Lattice Boltzmann thermohydrodynamics," Physical Review E, vol. 47, pp. R2249-R2252, 1993.
    [15] A. Bartoloni, C. Battista, S. Cabasino, P. S. Paolucci, J. Pech, R. Sarno, et al., "LBE simulations of Rayleigh-Bénard convection on the APE100 parallel processor," International Journal of Modern Physics C, vol. 04, pp. 993-1006, 1993/10/01 1993.
    [16] X. Shan, "Simulation of Rayleigh-Be´nard convection using a lattice Boltzmann method," 1996.
    [17] S. C. Xiaoyi He, and Gary D. Doolen, "a novel thermal model for the lattice boltzmann in incompressible limit," 1998.
    [18] Y. Peng, C. Shu, and Y. T. Chew, "Simplified thermal lattice Boltzmann model for incompressible thermal flows," Phys Rev E Stat Nonlin Soft Matter Phys, vol. 68, p. 026701, Aug 2003.
    [19] X. Xiang, Z. Wang, and B. Shi, "Modified lattice Boltzmann scheme for nonlinear convection diffusion equations," Communications in Nonlinear Science and Numerical Simulation, vol. 17, pp. 2415-2425, 2012.
    [20] X. H. Xiaowen Shan, "Discretization of the Velocity Space in the Solution of the Boltzmann Equation," 1998.
    [21] Ginzburg, "A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids," 2002.
    [22] G. C. Jonas Latt, Bastien Chopard, and Jean Luc Falcone, "Lattice Boltzmann Modeling of Injection Moulding Process," Springer Berlin Heidelberg, vol. 3305, pp. 345-354, 2004.
    [23] C. Körner, M. Thies, T. Hofmann, N. Thürey, and U. Rüde, "Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming," Journal of Statistical Physics, vol. 121, pp. 179-196, 2005.
    [24] U. R. N. Thürey, C. Körner, "Interactive Free Surface Fluids with the Lattice Boltzmann Method," 2005.
    [25] N. Thürey and U. Rüde, "Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids," Computing and Visualization in Science, vol. 12, pp. 247-263, 2008.
    [26] X. Q. Xing, D. L. Butler, and C. Yang, "Lattice Boltzmann-based single-phase method for free surface tracking of droplet motions," International Journal for Numerical Methods in Fluids, vol. 53, pp. 333-351, 2007.
    [27] K. C. Elham Attar, "Lattice Boltzmann model for thermal free surface flows with liquid–solid," 2010.
    [28] K. Carolin, E. Attar, and H. Peter, "Mesoscopic simulation of selective beam melting processes," Journal of Materials Processing Technology, vol. 211, pp. 978-987, 2011.
    [29] R. Ammer, M. Markl, U. Ljungblad, C. Körner, and U. Rüde, "Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method," Computers & Mathematics with Applications, vol. 67, pp. 318-330, 2014.
    [30] M. Matthias, A. Regina, L. Ulric, R. Ulrich, and K. Carolin, "Electron Beam Absorption Algorithms for Electron Beam Melting Processes Simulated by a Three-Dimensional Thermal Free Surface Lattice Boltzmann Method in a Distributed and Parallel Environment," Procedia Computer Science, vol. 18, pp. 2127-2136, 2013.
    [31] T. Krüger, "Unit conversion in LBM," google2011.
    [32] 林晃業, "微奈米結構射出成型之研究," 國立成功大學航空太空工程學系博士論文, 2010.
    [33] 林百會, "微射出成形微結構之尺寸變型研究," 國立成功大學航空太空工程學系碩士論文, 2013.
    [34] 陳維霖, "應用晶格波茲曼法結合大渦法模擬紊流強制對流熱傳問題," 國立成功大學機械工程研究所碩士論文, 2012.
    [35] 李建鋐, "微流道射出成型充填研究," 國立成功大學航空太空工程學系碩士論文, 2007.
    [36] 郭照立、鄭楚光, "格子Boltzmann方法的原理及應用," 北京: 科學出版社, 2008.

    無法下載圖示 校內:2022-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE