研究生: |
張志宇 Chang, Chih-Yu |
---|---|
論文名稱: |
於金奈米柱陣列附著金屬奈米粒子做為雙接面表面增顯拉曼散射基板對第一型膠原蛋白之量測 Metal Nanoclusters on Focused ion beam Fabricated Au Nanorod Array as a Double junction SERS-active substrate for Collagen Type-I Detection |
指導教授: |
廖峻德
Liao, Jiunn-Der |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 表面增顯拉曼散射 、雙接面 、4-氨基苯硫酚 、第一型膠原蛋白 |
外文關鍵詞: | SERS, double junction, 4- aminobenzenethiol, collagen type-I |
相關次數: | 點閱:114 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金或銀奈米簇藉由電子束蒸鍍機蒸鍍於聚焦離子束製作之金奈米柱陣列上(fibAu_gNC與fibAu_sNC)以增加表面拉曼增顯散射(SERS)效果。利用結晶紫(crystal violet, CV)做為分子探針來評估增顯效果後發現與奈米簇之厚度有關。金與銀奈米簇層的蒸鍍厚度因而被選擇並蒸鍍於奈米柱表面上。之後選用4-氨基苯硫酚(4-ABT)與第一型膠原蛋白(collagen type-I)做為目標物,在與金或銀奈米粒子混合後置於fibAu_sNC基板上後使用拉曼光譜儀量測,結果顯示這種由奈米簇於奈米柱上和奈米粒子所形成之雙接面基板結構,將會產生強大的電磁增顯效果。藉由這種奈米結構複合基板,將可以達到單分子量測等級;而對第一型膠原蛋白來說,膠原蛋白中的胺基酸亦可被偵測。由這些初步的結果,我們推測基板中的奈米簇與奈米柱間的許多微小縫隙將會使電磁增顯效應提升,而目標物與奈米粒子混合後置於fibAu_sNC上將可進一步提昇對於SERS量測的靈敏度與選擇性。
Au or Ag nanoclusters (NCs) were sputtered on focused-ion-beam (FIB) fabricated Au nanorod (NR) array (fibAu_gNC and fibAu_sNC) to promote the effect of surface enhanced Raman scattering (SERS). The effect was estimated by crystal violet (CV) as the probe molecule and found to rely on the agglomerated thickness of NCs. A thin-layer deposition of Au or Ag on the top and side surfaces of NR was thereafter chosen. Furthermore examinations on 4-aminobenzenethiol and collagen type-I, mixing with AuNPs or AgNPs upon fibAu_sNC, showed that a strong electromagnetic field effect is presumably generated at the two hot-spot junctions, namely, NPs with NCs and NCs with NRs. Through this hybrid nanostructure system, trace detection at the single molecule level can be reached. In particular for the collagen type-I target, the quality of amino acids can also be detected. Based upon this preliminary study, a small gap at the NCs on NR interface may increase the localized EM field, while target species mixed with NPs place upon fibAu_sNC additionally increase the sensitivity and selectivity of SERS-active detection.
[1] L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney, and M. J. Natan, "Raman Spectroscopy", Analytical Chemistry, Vol. 70(12), 341-362, 1998.
[2] K. Katrin, K. Harald, I. Irving, R. D. Ramachandra, and S. F. Michael, "Surface-enhanced Raman scattering and biophysics", Journal of Physics: Condensed Matter, Vol. 14(18), R597, 2002.
[3] K. C. Schuster, E. Urlaub, and J. R. Gapes, "Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture", Journal of Microbiological Methods, Vol. 42(1), 29-38, 2000.
[4] M. Harz, P. Rosch, K. D. Peschke, O. Ronneberger, H. Burkhardt, and J. Popp, "Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions", The Analyst, Vol. 130(11), 1543-1550, 2005.
[5] A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering", Chemical Society Reviews, Vol. 27, 241-250, 1998.
[6] S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering", Science, Vol. 275(5303), 1102-1106, 1997.
[7] R. A. Tripp, R. A. Dluhy, and Y. Zhao, "Novel nanostructures for SERS biosensing", Nano Today, Vol. 3(3-4), 31-37, 2007.
[8] B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, "LSPR-based nanobiosensors", Nano Today, Vol. 4(3), 244-251, 2009.
[9] N. Ji, W. Ruan, C. Wang, Z. Lu, and B. Zhao, "Fabrication of Silver Decorated Anodic Aluminum Oxide Substrate and Its Optical Properties on Surface-Enhanced Raman Scattering and Thin Film Interference," Langmuir, Vol. 25, 11869-11873, 2009.
[10] L. Zhang, P. Zhang and Y. Fang, "Magnetron sputtering of silver nanowires using anodic aluminum oxide template: A new active substrate of surface enhanced Raman scattering and an investigation of its enhanced mechanism," Analytica Chimica Acta, Vol. 591, 214-218, 2007.
[11] C. Ruan, G. Eres, W. Wang, Z. Zhang, and B. Gu, "Controlled Fabrication of Nanopillar Arrays as Active Substrates for Surface-Enhanced Raman Spectroscopy," Langmuir, Vol. 23, 5757-5760, 2007.
[12] N. Marquestaut, A. Martin, D. Talaga, L. Servant, S. Ravaine, S. p. Reculusa, D. M. Bassani, E. Gillies, and F. o. Lagugné-Labarthet, "Raman Enhancement of Azobenzene Monolayers on Substrates Prepared by Langmuir−Blodgett Deposition and Electron-Beam Lithography Techniques," Langmuir, Vol. 24, 11313-11321, 2008.
[13] U. Huebner, R. Boucher, H. Schneidewind, D. Cialla, and J. Popp, "Microfabricated SERS-arrays with sharp-edged metallic nanostructures," Microelectronic Engineering, Vol. 85, 1792-1794, 2008.
[14] B. Cui, Y. Cortot, and T. Veres, "Polyimide nanostructures fabricated by nanoimprint lithography and its applications," Microelectronic Engineering, Vol. 83, 906-909, 2006.
[15] X. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, "Advances in Contemporary Nanosphere Lithographic Techniques," Journal of Nanoscience and Nanotechnology, Vol. 6, 1920-1934, 2006.
[16] A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-Enhanced Raman Scattering," Nano Letters, Vol. 4, 2015-2018, 2004.
[17] A. Dhawan, M. Gerhold, and T. Vo-Dinh, "Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS)," Nanobiotechnology, Vol. 3, 164-171, 2007.
[18] Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, "Localized Raman Enhancement from a Double-Hole Nanostructure in a Metal Film," The Journal of Physical Chemistry C, Vol. 112, 15098-15101, 2008.
[19] J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, "The Use of Aligned Silver Nanorod Arrays Prepared by Oblique Angle Deposition as Surface Enhanced Raman Scattering Substrates," The Journal of Physical Chemistry C, Vol. 112, 895-901, 2008.
[20] G.V. P. Kumar, S. Shruthi, B. Vibha, B.A.A. Reddy, T.K. Kundu, and C. Narayana, "Hot Spots in Ag Core−Au Shell Nanoparticles Potent for Surface-Enhanced Raman Scattering Studies of Biomolecules," The Journal of Physical Chemistry C, Vol.11, 4388-4392, 2007.
[21] Y. Y. Lin, "Specific Ring Diameter among Nano-rods fabricated by Focused Ion Beam and Used as SERS-active Substrate for Trace Detection of Molecular Probes and Various Viruses," Diss.National Cheng Kung University, 2012.
[22] R. Botta, G. Upender, R. Sathyavathi, D. Narayana Rao, and C. Bansal, "Silver nanoclusters films for single molecule detection using Surface Enhanced Raman Scattering (SERS) ", Materials Chemistry and Physics, Vol. 137, 699-703, 2013.
[23] F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, "Nanoparticle Cluster Arrays for High-Performance SERS through Directed Self-Assembly on Flat Substrates and on Optical Fibers", ASC NANO, Vol. 6, No. 3 , 2056–2070, 2012.
[24] Z. Huang, G. Meng, Q. Huang, Y. Yang, C. Zhu, and C. Tang, "Improved SERS Performance from Au Nanopillar Arrays by Abridging the Pillar Tip Spacing by Ag Sputtering", Advanced Material, Vol. 22, 4136–4139, 2010.
[25] K. Kim, J. Y. Choi, H. B. Lee, and K. S. Shin, " Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: Effects of size of Ag nanoparticles and the excitation wavelength", The Journal of Chemical Physics, Vol. 135, 124705, 2011.
[26] C. Gullekson, L. Lucas, K. Hewitt, and L. Kreplak, "Surface-Sensitive Raman Spectroscopy of Collagen I Fibrils", Biophysical Journal, Vol. 100, 1837-1845, 2011.
[27] L. J. Chen, Y. C. Su, and J. R. Hong, "Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells", Virology, Vol. 385, 444–454, 2009.
[28] G. Keresztury, "Raman Spectroscopy: Theory," Handbook of Vibrational Spectroscopy, 2006.
[29] 汪建民, "材料分析," 國材料科學學會, 73-82, 1998.
[30] C. Krafft, G. Steiner, C. Beleites, and R. Salzer, "Disease recognition by infrared and Raman spectroscopy," Journal of Biophotonics, Vol. 2, 13-28, 2009.
[31] R. Petry, M. Schmitt and J. Popp, "Raman Spectroscopy—A Prospective Tool in the Life Sciences," ChemPhysChem, Vol. 4, 14-30, 2003.
[32] 李冠卿, "表面強化拉漫散射," 物理雙月刊, vol. 5, 185-, 1983.
[33] 謝雲生, "雷射拉曼光譜簡介," 物理雙月刊, vol. 7, 25-, 1985.
[34] S. A. H. Nieman, "Raman spectroscopy, principles of instrumental analysis," Harcourt Brace & Company, 429-430, 1998.
[35] J. R. F. a. K. Nakamoto, "Introduction Raman spectroscopy," Academic Press, 1-25, 1994.
[36] L. R. a. McCreery, "Raman spectroscopy for chemical analysis," New York: Wiley Interscience, Vol. 157, 2000.
[37] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, Vol. 26, 163-166, 1974.
[38] D. L. Jeanmaire and R. P. Van Duyne, "Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 84, 1-20, 1977.
[39] 吳民耀和劉威志, "表面強化拉曼散射," 物理雙月刊, Vol. 2, 486-495, 2006.
[40] A. Otto, "Surface-enhanced Raman scattering: “Classical” and “Chemical” origins," Sptinger-Verlag, Vol. 54, 289-418, 1984.
[41] S. Corni, and J. Tomasi, "Studying SERS from metal nanoparticles and nanoparticles aggregates with continuum models", Surface-Enhanced Raman Scattering: physics and applications, Vol. 103, 105-123, 2006
[42] H. Xu and M. Käll, "Estimating SERS properties of silver-particle aggregates through generalized Mie theory", Surface-Enhanced Raman Scattering: physics and applications, Vol. 103, 87-103, 2006
[43] J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, "Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots", Journal of the American Chemical Society, Vol. 130, 12616, 2008.
[44] H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, "Arrays of Cone-Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface-Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls", Advanced Functional Material, Vol. 22, 218–224, 2012
[45] G. T. Boyd, T. H. M. Rasing, J. R. Leite, and Y. R. Shen, "Local-Field Enhancement on Rough Surfaces of Metals, Semimetals, and Semiconductors with the Use of Optical 2nd-Harmonic Generation", Physical Review B, Vol. 30, 519, 1984.
[46] G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces", Physical Review B, Vol. 33, 7923, 1986.
[47] S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures", Journal of Applied Physics, Vol. 98, 011101, 2005.
[48] S. J. Lee, Z. Guan, H. Xu, and M. Moskovits, "Surface-Enhanced Raman Spectroscopy and Nanogeometry: The Plasmonic Origin of SERS", The Journal of Physical Chemistry C, Vol. 111, 17985, 2007.
[49] K. L. Wustholz, C. L. Brosseau, F. Casadio, and R. P. Van Duyne, "Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas", Physical Chemistry Chemical Physics, Vol. 11, 7350, 2009.
[50] S. Reyntjens and R. Puers, "A review of focused ion beam applications in microsystem technology", Journal of Micromechanics and Microengineering, Vol. 11, 287–300, 2001.