| 研究生: |
許登傑 Hsu, Deng-Jie |
|---|---|
| 論文名稱: |
超音波能量影響界面反應及介金屬化合物相變化於銅打線製程之研究 Ultrasonic Power Effect on Interfacial Reactions and Phase Transformations of IMC for Copper Wire Bonding |
| 指導教授: |
呂國彰
Lu, Kuo-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 銅打線 、超音波能量 、介金屬相變化 、界面反應 |
| 外文關鍵詞: | Copper wire bond, ultrasonic power, phase transformations of IMC, interfacial reactions |
| 相關次數: | 點閱:173 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以不同的超音波震盪之電流及能量作為銅打線製程的參數,並經由熱處理來觀察介面反應與介金屬化合物的相變化,以尋較好的條件使銅打線可擁有較好的可靠度。
研究當中指出,據有較高的USG PreBleed之打線製程的銅球會較為柔軟,並可減少鋁墊所受到的擠壓與損害,且對於介面所生成的介金屬化合物對照於較硬的銅球來的均勻及薄。
介金屬化合物的相變化在本研究也被探討,在150℃之不同時間的熱處理下,所產生的相包含有三種,分別為Cu9Al4 、CuAl及CuAl2,其結果於本論文最後說明之。
In this study, we used different current, power of ultrasonic vibration and heat treatments for copper wire bonding to investigate the interfacial reactions and phase transformations of intermetallic compounds for better reliability.
It was found that higher USG PreBleed of the wire bonding process led to softer copper balls and less extrusion and damage of aluminum pads, contributing to the more uniform and thinner intermetallic compounds.
At different stages of heat treatments at 150。C, the phase transformations of the IMC, including Cu9Al4, CuAl and CuAl2, were also studied. The results may be attributed to the kinetics and thermodynamics of the IMC.
[1] 徐祥禎,「電子構裝結構分析」,民國九十八年。
[2] 陳博彥,「微細銅導線放電結球特性與打線接合強度要因探討」,國立成功大學材料科學與工程學系碩士論文,民國九十七年。
[3] H. J. Kim, J. Y, Lee, “ Effects of Cu/Al intermetallic Compound(IMC) on Copper Wire and Aluminum Pad Bondability ”, IEEE Trans. Adv. Packag., Vol. 26, No. 2, pp. 367-374, 2003
[4] 李志中,「線上熱處理銅導線經放電結球前後之為觀結構及拉伸性質探討」,國立成功大學材料科學與工程學系碩士論文,民國九十五年。
[5] I. LUM, C.J. HANG, “ In Situ Studies of the Effect of Ultrasound During Deformation on Residual Hardness of a Metal ”, Journal of ELECTRONIC MATERIALS, Vol. 38, No. 5, pp. 647-654, 2009
[6] C.D. Breach , F.W. Wulff , “ A brief review of selected aspects of the materials science of ball bonding”, Microelectronics Reliability, Vol. 50, No.1, pp. 1-20, 2010
[7] S. Murali, N. Srikanth, “ Grains, Deformation Substructrues, and Slip Bands Observed in Thermosonic Copper Ball Bonding”, Materials Characterization, Vol. 50, pp. 39-50, 2003
[8] C.J. Hang , C.Q. Wang , “Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging”, Microelectronics Reliability, Vol. 48, No. 3, pp. 416-424, 2008
[9] Z.W. Zhong , H.M. Ho , “Study of factors affecting the hardness of ball bonds in copper wire bonding”, Microelectronic Engineering, Vol. 84, No. 6, pp. 368-374, 2007
[10] G. Harman, C. Johnson, “ Wire Bonding to Advanced Copper-Low-K Integrated Circuits, the Metal/Dielectric Stacks, and Materials Consideration ”, Proceedings 2001 International Symposium on Microelectronics (IMAPS), pp. 484-491, 2001
[11] H. Huang, A. Pequegnat, “Influence of superimposed ultrasound on deformability of Cu”, Journal of Applied Physics, Vol. 106, No. 11, pp. 113514, 2009
[12] I. Lum, H. Huang, “Effects of superimposed ultrasound on deformation of gold”, Journal of Applied Physics, Vol. 105, No. 2, pp. 024905, 2009
[13] I. Qin, A. Shah, “Effect of Process Parameters on Pad Damage during Au and Cu Ball Bonding Processes”, 2009 11th Electronics Packaging Technology Conference
[14] I. Qin , A. Shah , “Role of process parameters on bondability and pad damage indicators in copper ball bonding”, Microelectronics Reliability, Vol. 51, No. 1, pp. 60-66, 2010
[15] Z. Xueren , T. Y. Tong, “Numerical and experimental correlation of high temperature reliability of gold wire bonding to intermetallics (Au/Al) uniformity”, Thin Solid Films, Vol. 504, No.1-2, pp. 355-361, 2006
[16] J. K. HYOUNG, S. C. JONG, “Effects of Pd Addition on Au Stud Bumps/Al Pads Interfacial Reactions and Bond Reliability”, Journal of ELECTRONIC MATERIALS, Vol. 33, No. 10, pp. 1210-1218, 2004
[17] Ji. Hongjun, Li Mingyu, “Comparison of interface evolution of ultrasonic aluminum and gold wire wedge bonds during thermal aging”, Materials Science and Engineering, Vol. 447, No. 1-2, pp. 111-118, 2007
[18] S. Murali, N. Srikanth, “An analysis of intermetallics formation of gold and copper ball bonding on thermal aging”, Materials Research Bulletin, Vol. 38, No. 4, pp. 637-646, 2003
[19] Yeoh L. S., “Characterization of Intermetallic Growth for Gold Bonding and Copper Bonding on Aluminum Metallization in Power Transistors”, 2007 9th Electronics Packaging Technology Conference
[20] H. T. G. Hentzell, R. D. Thompson, “Interdiffusion in copper-aluminum thin film bilayers. I. Structure and kinetics of sequential compound formation”, J. Appl. Phys., Vol. 54, No. 12, pp. 6923-6928, 1983
[21] H. T. G. Hentzell and K. N. Tu , “Interdiffusion in copper-aluminum thin film bilayers. II. Analysis of marker motion during sequential compound formation”, J. Appl. Phys., Vol. 54, No. 12, pp. 6929-6937, 1983
[22] Hui X., Changqing L., “TEM Microstructural Analysis of As-bonded Copper Ball Bonds on Aluminum Metallization”, 2008 10th Electronics Packaging Technology Conference
[23] H. Xu, C. Liu, “A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads”, Scripta Materialia, Vol. 61, No. 2, pp.165-168, 2009
[24] H. Xu, C. Liu, “Effect of bonding duration and substrate temperature in copper ball bonding on aluminium pads: A TEM study of interfacial evolution”, Microelectronics Reliability, Vol. 51, No. 1, pp. 113-118, 2011
[25] H. Xu, C. Liu, “Effect of ultrasonic energy on nanoscale interfacial structure in copper wire bonding on aluminium pads”, J. Phys. D: Appl. Phys., Vol. 44, No. 14, pp. 145301, 2011
[26] Drozdov M., Gur G, “Detailed investigation of ultrasonic Al–Cu wire-bonds: I. Intermetallic formation in the as-bonded state”, J Mater Sci, Vol. 43, pp. 6029-6037, 2008
[27] Jiunn C., Yi Shao L., “Investigation of growth behavior of Al–Cu intermetallic compounds in Cu wire bonding”, Microelectronics Reliability, Vol. 51, pp. 125-129, 2011
[28] Drozdov M., Gur G, “Detailed investigation of ultrasonic Al–Cu wire-bonds: II. Microstructural evolution during annealing”, J Mater Sci, Vol. 43, pp. 6038-6048, 2008
[29] Cheng-Fu Yu, Chi-Ming Chan, “Cu wire bond microstructure analysis and failure mechanism”, Microelectronics Reliability, Vol. 51, No. 1, pp. 119-124, 2011
[30] Hui X., Changoing L., “Growth of Intermetallic Compounds in Thermosonic Copper Wire Bonding on Aluminum Metallization”, Journal of ELECTRONIC MATERIALS, Vol. 39, No. 1, pp 124-131, 2010
[31] Lu Y. H., Wang Y. W., “Growth of CuAl Intermetallic Compounds in Cu and Cu(Pd) Wire Bonding”, 2011 Electronic Components and Technology Conference
[32] England L. and Jiang T. “Reliability of Cu Wire Bonding to Al Metallization”, 2007 Electronic Components and Technology Conference
[33] Tomohiro U, “Bond reliability under humid environment for coated copper wire and bare copper wire”, Microelectronics Reliability, Vol. 51, No.1, pp.148-156 , 2011
[34] Shingo K., Tsuyoshi N., “The Development of Cu Bonding Wire With Oxidation-Resistant Metal Coating”, IEEE Trans. Adv. Packag., Vol. 29, No. 2, pp. 227-231 , 2006
[35] 汪建民,「材料分析」,中國材料科學學會,民國八十七年.
[36] 成功大學微奈米科技研究中心FE-SEM儀器設備介紹
[37] 賴豐文,「鉭-矽-氮薄膜之特性與作為擴散阻礙層之研究」,國立成功大學材料科學與工程學系碩士論文,民國九十二年。
[38] Murali S., Srikanth N. “Fundamentals of thermo-sonic copper wire bonding in microelectronics packaging”, J Mater Sci, Vol. 42, No. 2, pp. 615-623, 2007
[39] Hsu H. C.,Chang W. Y., “Characteristic of copper wire and transient analysis on wirebonding process”, Microelectronics Reliability, Vol. 51, No.1, pp. 179-186, 2011
[40] KUMAR A. and CHEN Z., “Interdependent Intermetallic Compound Growth in an Electroless Ni-P/Sn-3.5Ag Reaction Couple”, Journal of ELECTRONIC MATERIALS, Vol. 40, No. 2, pp. 213-223, 2011