| 研究生: |
陳信甫 Chen, Shin-Fu |
|---|---|
| 論文名稱: |
銅奈米粒子的探討:硫醇吸附的影響與金銅合金奈米空球的製備 Studies of Copper nanoparticles: Influence of the Alkanethiols on Oxidized Copper Colloids and The Fabrication of the Hollow Spheres |
| 指導教授: |
葉晨聖
Yeh, chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 銅 、合金 、空球 、硫醇 、奈米 |
| 外文關鍵詞: | copper, nanoparticles, hollow spheres |
| 相關次數: | 點閱:61 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本實驗主要是探討硫醇對氧化後的銅奈米粒子的影響。以X射線光電子光譜(XPS)分別鑑定銅奈米粒子、靜置數天的銅奈米粒子、與靜置數天後再添加硫醇的銅奈米溶液。其中我們發現靜置數天的銅奈米表面有氧化銅的生成,然而在靜置數天後再添加有硫醇的銅奈米溶液中,硫醇可以將表面的氧化銅還原成銅,並吸附於銅奈米表面而形成硫醇化物。藉由穿透式電子顯微鏡觀察,可以明顯發現因氧化後產生聚集的奈米粒子,因硫醇的加入後,再次分散。
我們更利用基材涉入交換反應(Template-engaged replacement reactions),研發出新型的金銅合金奈米中空材料。本實驗以球型銅奈米粒子,利用金與銅氧化還原電位的不同,製備出合金中空型奈米粒子,藉由穿透式電子顯微鏡分析、電子繞射、高解析式X光粉末繞射分析,探討其性質與形成機制。中空型奈米空球中填充染料分子,藉由雷射共軛焦顯微鏡觀察其光學性質,可以明顯發現染料分子是有被填充於此中空球。所以可以利用中空型奈米粒子填充各種不同染料,發出各種不同波長的光。
Alkanethiols were utilized to study their influence on the oxidized Cu colloids. The XPS measurements have been performed to characterize Cu identity in various stages, i.e. freshly prepared Cu, aged Cu, and aged Cu mixing with alkanethiols. The aged colloidal solutions resulted in CuO grown. The adsorption of alkanethiols on the oxidized copper reduced with the formation of the surface thiolates. Based on the TEM images, addition of alkanethiols produced the distinct change in the colloidal appearance from aggregation to dispersion.
The uniform Au3Cu1 hollow nanoparticles were synthesized based on template engaged replacement reaction. On the basis of the transmission electron microscopy, electron diffraction, and high-resolution X-ray powder diffraction studies, we demonstrate a new method that was able to generate uniform and hollow nanostructures. The hollow alloy spheres with uniform composition were generated by reacting the Cu nanoparticles with an aqueous HAuCl4 solution. From the laser confocal images, we could find the encapsulation of the hollow spheres. It could be used as a vessel to control the desired luminescence by filling different dyes into the hollow spheres.
1. K. T. Wu, Y. D. Yao, C. R. C. Wang, P. F. Chen, and E. T. Yeh, J. App. Phys., 85, 1999, 5959
2. 積體電路製成技術訓練班,行政院國科會毫微米元件實驗室,八十九年一月
3. J. J. Storhoff, C. A. Mirkin, Chem. Rev., 99, 1999, 1849
4. J. H. Fendler, Chem. Rev. , 87, 1987, 877
5. A. P. Alivisatos, Science, 271, 1996, 933
6. 莊萬發編撰,”超微粒子理論應用”,復漢出版社,1994
7. M. A. El-sayed, Z. L. Wang, J. Phys. Chem. B, 102, 1998, 6145
8. P. Buffat, J. P. Borel, Phys. Rev. A, 13, 1976, 2287
9. (a) I. Lisiecki, H. Sack-Kongehl, K. Weiss, J. Urban, and M. P. Pileni, Langmuir,16, 2000, 8802 (b) I. Lisiecki, H. Sack-Kongehl, K. Weiss, J. Urban, and M. P. Pileni, Langmuir, 16, 2000, 8807
10. M. Chanda, and A. K. Mukherjee, Ind. Eng. Chem. Res., 26, 1987, 2430
11. Z. L. Wang, T. S. Ahmad, M. A. El-Sayed, Surf. Sci. , 380, 1997, 302
12. I. Lisiecki, F. Billoudet, and M. P. Pileni, J. Phys. Chem. ,100, 1996, 4160
13. (a) T. Sugimoto, K. Sakata, and A. Muramatsu, J. Coll. Inter. Sci., 159, 1993, 372 (b) T. Sugimoto, K. Sakata, and A. Muramatsu, J. Coll. Inter. Sci., 152, 1992, 587
14. R. Dagani, C & EN, 9, 1997
15. F. Schoushan, H. Weiqiang, L. Qunqing, H. Yougdan, Sicence, 277, 1997, 1287
16. P. H. Hsu, Soil Sci. , 103, 1967, 101
17. A. V. Kabanov, S. N. Namethkin, A. V. Levashov, K. Martinek, Biol. Memb., 2, 1985, 985
18. H. M. Yamaki, K. Kusakabe, S. Morooka, J. Memb. Sci. ,85, 1993, 167
19. 蘇品書編撰,”超微粒子材料技術”,復漢出版社,1989
20. P. P. Edward, D. A. Jefferson, B. F. G. Johnson, A. C. Curtis, D. G. duff, A. I. Kirkland, A. S. Wallace, J. Phys. Chem., 92, 1988, 2270
21. S. Tadao, O. Kazumi, I. Hiroyuki, J. Coll. Inter. Sci., 193, 1997, 140
22. 簡建興,”利用雷射削磨方法生成銀毫微米粒子之研究”,國立成大博碩士論文,化學,1998
23. M. Otaki, N. Toshima, Chem. Lett. , 1, 1990, 489
24. K. Esumi, K. Matsuhisa, K. Torigie, Langmuir, 11, 1995, 3285
25. N. Toshima, T. Takahashi, H. Hirai, Chem. Lett., 1985, 1245
26. (a) R. Taush-Treml, A. Henglein, J. Lilie, Phys. Chem., 82, 1978, 1335 (b) P. Mulvaney, A. Henglein, J. Phys. Chem. , 81, 1977, 556
27. Y. Yoshiro, S. Tomoo, O. Masashi, H. Hiroshi, J. Chem. Soc. Faraday. Trans.Ⅰ, 83, 1987, 1559
28. Y. WatanNbe, S-I. Fujita, T. Dohmaru, S. Taniguchi, Y. Nagata, J. Chem. Soc. Chem. Commum. , 1992, 1620
29. A. Henglein, Ultrasonics, 25, 1987, 6
30. N. A. Dhas, H. Cohen, A. Gredanken, J. Phys. Chem. B, 101, 1997, 6834
31. M. Gutierrez, A. Henglein, Ultrasonics, 27, 1989, 259
32. K. Keisaku, W. Nobuhiko, Jpn. J. Appl. Phys. , 15, 1976, 755
33. M. T. Reetz, W. Helbig, J. Am. Chem. Soc., 106, 1994, 2473
34. Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, J. Phys. Chem. B, 101, 1994, 6661
35. M. V. Kortenaar, Z. I. Kolar, F. D. Tichelaar, J. Phys. Chem. B, 103, 1999, 2054
36. Y. Shigeki, K. Susumu, U. Ryozi, Jpn. J. Appl. Phys. 12, 1973, 1675
37. Y. Kimura, Takeuchi, T. Ida, J. Phys. Chem., 101, 1997, 1322
38. K. Kimura, Bull. Chem. Soc. Jpn., 57, 1984, 1683
39. K. Kimura, S. Bandow, Bull. Chem. Soc. Jpn., 56, 1983, 3578
40. K. Kimura, Bull. Chem. Soc. Jpn., 60, 1987,3093
41. K. Kimura, N. Satoh, Bull. Chem. Soc. Jpn., 62, 1989, 17558
42. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smally, Nature, 318, 1985, 162
43. A. M. Morales, C. M. Lieber, Science, 279, 1998, 208
44. T. Guo, P. Nikolaev, A. Thress, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. , 243, 1995, 49
45. A. Fojik, A. Henglein, B. Bunsenges., Phys. Chem., 97, 1993, 252
46. J. Neddersen, G. Chumanov, T. M. Cotton, Appl. Spectrosc., 47, 1993, 1959
47. J. S. Jeon, C. S. Yeh, J. Chin. Chem. Soc., 45, 1998, 721
48. (a) Y. H. Yeh, M. S. Yeh, Y. P. Lee, C. S. Yeh, Chem. Lett. , 1998, 1183 (b) M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh, C. S. Yeh, J. Phys. Chem. B, 103, 1999, 6851
49. F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow , H. Sawabe, J. Phys. Chem. B, 104, 2000, 9111
50. Y. H. Chen, C. S. Yeh, Chem. Commun., 2001, 371
51. Y. H. Chen, Y. H. Tseng, C. S. Yeh, J. Mater. Chem., 14, 2002, 1419
52. S. H. Tsai, Y. H. Liu, P. L. Wu, C. S. Yeh, J. Mater. Chem., 13, 2003, 978
53. R. J. Hunter, “Introduction to Modern Colloid Science”, 1993
54. (a) H. R. Kruyt,”Colloid Scienc.”, Elsevier Science Publishing Company INC, 1952 (b) 張有義、郭蘭生編譯 ”膠體及界面化學入門”,高立圖書有限公司, 1997
55. (a) R. J. Good, R. R. Stromberg, "Surface and Colloid Science, vol.11", published by Plenum Press, New York and London (b) 趙承琛編著”界面科學基礎”,復文書局,1987
56. G. Schimid, “ Clusters and Colloids”, From Theroy to Application.
57. H. H. Huang, F. Q. Yan, Y. M. Kek, C. H. Chew, G. Q. Xu, W. Ji, P. S. Oh, S. H. Tang, Langmuir, 13, 1997, 172
58. C. F. Bohren, D. R. Huffman, “Absorption and Scattering of Light by Small Particles”, Wiley-Interscience, 1988
59. H. Freundlich, D. Striner, J. Chem. Soc., 1937,1081
60. D. G. Eadon, J. A. Creighton, J. Chem. Soc. Farady. Trans., 87, 1991, 3881
61. I. Lisiecki, M. P. Pileni, J. Am. Chem. Soc., 115, 1993, 3887
62. Q. Limin, M. Jiming, S. ulin, J. Collo. Inter. Sci, 86, 1997, 498
63. Z. Paszti, Z. E. Horvath, G. Peto, A. Karacs, L. Guczi, Appl. Surf. Sci, 109, 1997, 67
64. N. A. Dhas, C. P. Raj, A. Gedanken, Chem. Mater., 10, 1998, 1446
65. A. Henglein, J. Phys. Chem. B, 104, 2000, 1206
66. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanjy, Y. Asahara, and A. J. Ikushime, J. Opt. Soc. Am. B, 11, 1994, 1236
67. H. Hosono, Y. Abe, Appl. Phys. Lett., 60, 1992, 2613
68. H. Hirai, Hidehiko, Wakabayshi, M. Komiyama, Chem. Lett, 1983, 1047
69. H. Hirai, Hidehiko, Wakabayshi, M. Komiyama, Bull. Chem. Soc. Jpn., 59, 1986, 545
70. S. M. Angel, L. F. Katz, D. D. Archibald, D. E. Honigs, App. Spectro., 43, 1989, 367
71. F. Caruso, Adv. Mater., 13, 2001, 11.
72. Hollow and Solid Spheres and Microspheres: Science and Technology Associated with Their Fabrication and Application; Wilcox, D. L., Sr.; Berg, M.; Bernat, T.; Kelleman, D.; Cochran Jr., J. K.; Eds.; MRS Proceedings Vol. 372; Material Research Society: Pittsburgh, PA, 1994.
73. F. Caruso, H. Mohwald, J. Am. Chem. Soc. 121, 1999, 6039.
74. I. Gill,; A. Ballesteros,; J. Am. Chem. Soc. 120, 1998, 8587.
75. Lewis D. D. in Biodegradable Polymers and Drug Delivery Systems (Eds.: M. Charsin, R. Langer), Marcel Decker, New York, 1990.
76. S. W. Kim, M. Kim, W. Y. Lee, T. Hyeon, J. Am. Chem. Soc. 124, 2002, 7642.
77. Y. Sun, B. Mayers, Y. Xia, Adv. Mater. 15, 2003, 641.
78. C. Graf, A. Blaaderen, Langmuir 18, 2002, 524.
79. Y. Yin, Y. Lu, B. Gates, Y. Xia, Chem. Mater. 14, 2001, 1146.
80. A. Imhof, Langmuir 17, 2001, 3579.
81. F. Caruso, X. Shi, R. A. Caruso, A. Susha, Adv. Mater. 13, 2001, 740.
82. S. O. Obare, N. R. Jana, C. J. Murphy, Nano Letters 1, 2001, 601.
83. S. M. Marinakos, J. P. Novak, L. C. Brousseau, A. B. House, E. M. Edeki, J. C. Feldhaus, D. L. Feldheim, J. Am. Chem. Soc. 121, 1999, 8518.
84. T. Wang, X. Zhou, Langmuir 2003.
85. T. Ji, V. G. Lirstman, Y. Avny, D. Davidov, Adv. Mater. 13, 2001, 1523.
86. F. Caruso, H. Lichtenfeld, M. Giersig, H. Mohwald, J. Am. Chem. Soc. 120, 1998, 8523.
87. F. Caruso, M. Spasova, A. Susha, M. Giersig, R. A. Caruso, Chem. Mater. 13, 2001, 109.
88. Y. Sun, B. T. Mayers, Y. Xia, Nano Letters 2, 2002, 481.
89. Y. Sun, Y. Xia, Science 298, 2002, 2176.
90. K. C. Grabar, K. J. Allison, B. E. Baker, R. M. Bright, K. R. Brown, R. G. Freeman, A. P. Fox, C. D. Keating, M. D. Musick, M. J. Natan, Langmuir, 12, 1996, 2353.
91. P. E. Laibinis, G. M. Whiesides, J. Am. Chem. Soc., 114, 1992, 9022.
92. M. C. Bourg, A. Badia, R. B. Lennox, J. Phys. Chem. B, 104, 2000, 6562.
93. S. W. Han, Y. Kim, K. Kim, J. Coll. Inter. Sci., 208, 1998, 272.
94. J. Khatouri, M. Mostafavi, J. Amblard, J. Belloni, Chem. Phys. Lett. 191, 1992, 351.
95. http:/www.lambdaphysik.com/
96. GSAS: Larson A. C.; Von Dreele, R. B. General Structure Analysis System, Los Alamos National Laboratory, Los Alamos, NM, USA., 1994.
97. Rietveld: H. M. Rietveld, J. Appl. Cryst. 2, 1969, 65.
98. J. A. Dean, The Lange’s Handbook of Chemistry, 5th Edition, 1999.