簡易檢索 / 詳目顯示

研究生: 王怡婷
Wang, Yi-Ting
論文名稱: 以捷運搭乘者時空活動探討 TOD 生活圈特徵- 以臺北市文湖線捷運站點周邊地區為例
Exploring the Characteristics of TOD Living Area from the Spatio-Temporal Activities of MRT Passengers':A case study of Taipei metro stations in Wenhu Line
指導教授: 鄭皓騰
Cheng, Hao-Teng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 101
中文關鍵詞: 時間地理學大數據捷運搭乘者生活圈大眾運輸導向發展
外文關鍵詞: Time Geography, Big Data, MRT Passengers, Living Circle, Transit-Oriented Development(TOD)
相關次數: 點閱:335下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大眾運輸導向發展為當代作為有效達到永續都市型態的重要策略,因此瞭解其都市生活型態是相當且具意義的研究與規劃議題。時間地理學提供一個從個體時空行為維度的研究框架,通過調查人們日常生活的時空活動對於空間結構進行描述,後續關注於都市內不同族群生活需求差異,惟過往研究在檢測空間結構因資料與技術限制無法呈現都市尺度下的動態空間結構特性。新型態大數據(Big Data)以更貼近都市人口資料且高時效性的動態資料,給予都市空間中人類的活動及時空間格局一個更全面詮釋。其中, IC 卡數據可揭示搭乘者隨時空間變化下的日常生活的固定及彈性非頻率性活動以及活動範圍,展現TOD 都市生活型態。
    本研究目的為探究 TOD 生活圈特徵,並以臺北捷運文湖線作為實證地區。在此目的下本研究以時間地理學為框架,提出一種基於個體時空活動大數據的動態空間結構分析架構,從解析人們的時空活動後而分析捷運站點周邊地區的動態空間結構。首先,透過連接捷運及公車 IC 卡數據建立個體時空行為大數據,瞭解一般、學生及高齡搭乘者平日及周末的旅次特性,提取不同族群於站點周邊地區頻率性及非頻率性活動特徵,歸納以捷運站點為核心之生活型態。最後,利用餐飲業 POI 代表商業發展程度,作為都市空間發展之展現,探索搭乘者特徵與站點周邊地方商圈發展的關係。
    根據研究結果,透過 IC 卡數據為基礎分析不同捷運搭乘者的時空活動,確實能解析各 TOD 場站周邊地區之生活圈特徵。依據搭乘者外出及停留活動特性上,顯示一般及學生族群外出活動時間段相似,而高齡者每日開始及結束外出活動的時間最早。在站點周邊停留從事活動的分析成果上,三類搭乘者在持續時間峰值具有明顯的三個峰值時間段,而在頻率性上高齡搭乘者不論在外出及停留活動天數上皆較其他搭乘者少一天。另外,透過停留時間分類其從事活動大致可歸納五種生活型態,分為居住型及工作學習型兩種頻率性活動;非頻率性活動則屬0.5 到 3.5 小時的短時間類型、 8 到 11 小時的中時間類型以及 11.25 到 12.5 小時的長時間類型。進一步分析平日及周末生活圈、 15–30–60 分鐘生活圈與三類搭乘者生活圈,可更具體的描述五種生活型態。最後,根據相關性分析成果,顯示搭乘者特徵對於餐飲業發展具有顯著的相關,並以一般搭乘者的影響情形較高,而高齡搭乘者的影響程度較低。透過解析 TOD 的生活型態,可協助瞭解規劃定位與實際空間結構的差異,有助於未來 TOD 的施政方向上,規劃者可更貼近使用者導向下反映土地的規劃策略以及基盤設施的設計。

    Transit-Oriented Development(TOD)has become an important strategy that deeply affects the development of contemporary urban space and the living patterns of residents. Combined with the characteristics of big data, time geography provides a research framework for describing the dynamic structure of space from the spatial and temporal activities of different groups.
    The study aims to investigate the characteristics of TOD living circle. Time geography will be used as the research framework. Therefore, the study proposes a dynamic urban spatial structure analysis framework based on the big data of individual spatial and temporal activities, and chooses the Taipei metro stations in Wenhu Line as the empirical area. The research material will use the metro and bus IC card data to extract the frequency and non-frequency activities and the range of living circle. To generalize the life style under TOD, and explore the relationship between rider characteristics and the development of local catering districts around the stations.
    The results of this study indicate that there are differences in the spatial and temporal activity characteristics of the stations, and Wenhu Line can be categorized into five types of living areas, which represent the functional services corresponding to each types. Based on the characteristics of various types of activities and living areas, the study can help to understand the difference between the planning positioning and the actual spatial structure, and provide valuable suggestions for the future direction of TOD.

    目錄 第一章 緒論 1 第一節 研究動機與目的 1 壹、研究背景與動機 1 貳、研究目的 3 第二節 研究範疇 5 壹、研究對象 5 貳、研究型態 5 參、研究時間 5 肆、研究空間 5 第三節 名詞定義與解釋 6 壹、捷運搭乘者 6 貳、搭乘者時空活動 6 肆、都市生活型態 6 伍、生活圈 6 第四節 研究內容與流程 7 第二章 文獻回顧 8 第一節 時間地理學下的都市空間結構 8 壹、時間地理學理論 8 貳、時間地理學之於都市規劃 9 參、基於時間地理學下之都市空間結構分析 10 第二節 TOD 與都市生活型態 12 壹、 TOD 之建成環境特徵 12 貳、大眾運輸搭乘者時空行為研究 13 參、 TOD 下之都市生活型態 14 第三節 大數據資料與空間分析方法 16 壹、以大數據資料辨識動態的都市空間結構 16 貳、以大數據資料辨識都市空間發展情形 21 參、小結 22 第三章 研究設計 23 第一節 研究內容與方法 23 壹、操作架構與概念 23 貳、實證地區 25 第二節 捷運搭乘者時空行為資料庫建置及特徵解析 26 壹、資料選擇 26 貳、資料萃取及資料庫建置 29 參、建立個體時間序列 30 肆、解析搭乘者行為模式 31 第三節 捷運站點周邊生活圈之辨識 32 壹、站點周邊地區空間特徵綜整 32 貳、K-means集群分析 35 參、辨識各集群生活圈 36 第四節 捷運搭乘者時空特徵與站點周邊商業發展程度之探索 38 壹、商業資料選擇 38 貳、資料萃取及處理 40 參、辨識站點周邊地區搭乘者特徵與商業發展活力的關係 42 第四章 實證分析 43 第一節 文湖線站點周邊空間現況分析 43 壹、文湖線站點周邊土地使用現況 43 貳、文湖線站點搭乘者分布情形 48 第二節 捷運搭乘者時空行為及活動之辨識 49 壹、開始及結束時間特性 49 貳、停留活動持續時間特性 52 參、小結 56 第三節 站點周邊地區特徵綜整及生活圈辨識 57 壹、站點周邊地區活動特徵 57 貳、K-means集群分析結果 61 參、各分群生活圈分析 63 肆、集群命名 78 伍、小結 79 第四節 搭乘者活動與商業發展活力的關係 80 壹、站點周邊地區商業發展活力分析 80 貳、搭乘者活動與商業發展活力綜合討論 82 參、小結 83 第五節 研究成果與政策運用討論 84 壹、研究成果討論 84 貳、成果應用於 TOD 政策回應 86 第五章 結論與建議 88 第一節 結論 88 壹、發展可供辨識搭乘者時空活動與特徵之研究架構 88 貳、歸納 TOD 政策下之多元生活型態 88 參、搭乘者特徵與商業發展活力存在關連 88 肆、證實以時間地理學觀點探索大數據於都市規劃之可能性 89 第二節 研究建議 90 壹、後續研究建議 90 參考文獻 91 附錄一 文湖線捷運搭乘者一周進出站人流情形分析 98

    一、中文文獻參考
    江繼元 (2020)。臺北都會區捷運場站運量特性及影響模型之研究。國立政治大學,臺北市。 https://hdl.handle.net/11296/hk4589
    余政澤 (2019)。 以時空路徑探討臺灣鄉村高齡者的日常生活型態與自覺健康-以屏東縣竹田鄉西勢村為例。國立成功大學,臺南市。 https://hdl.handle.net/11296/22z6ar
    林祥生、邱詩淳、劉益豪 (2005)。 應用悠遊卡資料挖掘公車乘客之需求特性。中華民國運輸學會第20屆論文研討會。
    陆锋 (2014)。大数据时代的人类移动性研究。地球信息科学学报, 16(地理大數據),665-672。 https://doi.org/10.3724/SP.J.1047.2014.00665
    柴彦威 (1997)。 时间地理学的基本概念与表示方法。 经济地理, K91。
    柴彦威 (2011)。 面向城市规划应用的时间地理学研究。 国际城市规划, K9。
    陳佑伊 (2007)。 高齡者旅運特性與運輸障礙分析。中華大學,新竹市。 https://hdl.handle.net/11296/6d6672
    陳宥宇 (2021)。 以餐飲業POI數據探討建成環境對城市活力之影響—以臺北淡水信義線捷運站周邊地區為例。國立成功大學,臺南市。 https://hdl.handle.net/11296/f4jshs
    陳鑫智 (2021)。 以智慧卡資料探討臺南市公車使用者時空行為。中國文化大學, 臺北市。 https://hdl.handle.net/11296/yxq2kv
    費曼妲 (2022)。 城市捷運場站及其周邊行動不方便族群之可及性評估研究。國立臺灣大學,臺北市。 https://hdl.handle.net/11296/h8nyng
    潘廷彥 (2021)。 高齡者搭乘捷運旅運之時空分布型態分析 –以雙北地區為例。國立政治大學, 臺北市。 https://hdl.handle.net/11296/7ysy86
    蔡禾 (2011)。 都市社会学讲义,人民出版社。
    顏郁珊 (2018)。 愛評網之臺灣日式料理服務品質屬性對滿意度關係探討 -以價位別與區域別為干擾。輔仁大學, 新北市。 https://hdl.handle.net/11296/8278c8

    二、外文文獻參考
    Andersson, E., Malmberg, B., & Östh, J. (2012). Travel-to-school distances in Sweden 2000–2006: changing school geography with equality implications. Journal of Transport Geography, 23, 35-43. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2012.03.022
    Berg, J., Levin, L., Abramsson, M., & Hagberg, J.-E. (2014). Mobility in the transition to retirement – the intertwining of transportation and everyday projects. Journal of Transport Geography, 38, 48-54. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2014.05.014
    Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira, J., & Ratti, C. (2013). Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies, 26, 301-313. https://doi.org/https://doi.org/10.1016/j.trc.2012.09.009
    Calthorpe, P. (1993). The Next American Metropolis: Ecology, Community, and the American Dream.
    Chai, Y. (2013). Space–Time Behavior Research in China: Recent Development and Future Prospect. Annals of the Association of American Geographers, 103(5), 1093-1099. https://doi.org/10.1080/00045608.2013.792179
    Chai, Y., Ma, J., & Zhang, W. (2010). The residential differentiation of tour-based spatio-temporal decision-making of travel behavior in Beijing. Geographical Research, 29, 1725-1734.
    Chakirov, A., & Erath, A. (2012). Activity Identification and Primary Location Modelling Based on Smart Card Payment Data for Public Transport. Eidgenössische Technische Hochschule Zürich, IVT, Institute for Transport Planning and Systems. https://books.google.com.tw/books?id=pF5CMwEACAAJ
    Chen, E. H., Ye, Z. R., Wang, C., & Zhang, W. B. (2019). Discovering the spatio-temporal impacts of built environment on metro ridership using smart card data [Article]. Cities, 95, 14, Article 102359. https://doi.org/10.1016/j.cities.2019.05.028
    Chen, J., Shaw, S. L., Yu, H. B., Lu, F., Chai, Y. W., & Jia, Q. L. (2011). Exploratory data analysis of activity diary data: a space-time GIS approach [Article]. Journal of Transport Geography, 19(3), 394-404. https://doi.org/10.1016/j.jtrangeo.2010.11.002
    Eagle, N., & Pentland, A. S. (2009). Eigenbehaviors: identifying structure in routine. Behavioral Ecology and Sociobiology, 63(7), 1057-1066. https://doi.org/10.1007/s00265-009-0739-0
    Elleg, xe, rd, K., xe, gerstrand, T., & Lenntorp, B. (1977). Activity Organization and the Generation of Daily Travel: Two Future Alternatives. Economic Geography, 53(2), 126-152. https://doi.org/10.2307/142721
    Ellegard, K., & Svedin, U. (2012). Torsten Hagerstrand's time-geography as the cradle of the activity approach in transport geography [Article]. Journal of Transport Geography, 23, 17-25. https://doi.org/10.1016/j.jtrangeo.2012.03.023
    Faroqi, H., Mesbah, M., Kim, J., & Tavassoli, A. (2018). A model for measuring activity similarity between public transit passengers using smart card data. Travel Behaviour and Society, 13, 11-25. https://doi.org/https://doi.org/10.1016/j.tbs.2018.05.004
    Gómez-Varo, I., Delclòs-Alió, X., & Miralles-Guasch, C. (2022). Jane Jacobs reloaded: A contemporary operationalization of urban vitality in a district in Barcelona. Cities, 123, 103565. https://doi.org/https://doi.org/10.1016/j.cities.2022.103565
    Gong, Y., Lin, Y., & Duan, Z. (2017). Exploring the spatiotemporal structure of dynamic urban space using metro smart card records. Computers, Environment and Urban Systems, 64, 169-183. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2017.02.003
    Halás, M., & Klapka, P. (2021). Revealing the structures of internal migration: A distance and a time-space behaviour perspectives. Applied Geography, 137, 102603. https://doi.org/https://doi.org/10.1016/j.apgeog.2021.102603
    Halás, M., & Klapka, P. (2023). The timescape of the city: Example of spatial interactions based on big data. Habitat International, 131, 102736. https://doi.org/https://doi.org/10.1016/j.habitatint.2022.102736
    Hao, J., Zhu, J., & Zhong, R. (2015). The rise of big data on urban studies and planning practices in China: Review and open research issues. Journal of Urban Management, 4(2), 92-124. https://doi.org/https://doi.org/10.1016/j.jum.2015.11.002
    He, J., Zhang, R., Huang, X., & Xi, G. (2018). Walking Access Distance of Metro Passengers and Relationship with Demographic Characteristics: A Case Study of Nanjing Metro. Chinese Geographical Science, 28(4), 612-623. https://doi.org/https://doi.org/10.1007/s11769-018-0970-6
    Hägerstrand, T. (1970). WHAT ABOUT PEOPLE IN REGIONAL SCIENCE? , Association 24.
    Huang, Y. D., Du, Q., Li, Y., Li, J. T., & Huang, N. (2022). Effects of Metro Transit on the Job-Housing Balance in Xi'an, China [Article]. Journal of Urban Planning and Development, 148(1), 10, Article 04021068. https://doi.org/10.1061/(asce)up.1943-5444.0000798
    Jun, M.-J., Choi, K., Jeong, J.-E., Kwon, K.-H., & Kim, H.-J. (2015). Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul. Journal of Transport Geography, 48, 30-40. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2015.08.002
    Kaščák, O., Komárková, T., Kostelecká, Y., & Klapálková, V. (2023). Not being able to fool around with my friends at break – children’s home-based education in space and time. Children's Geographies, 1-15. https://doi.org/10.1080/14733285.2023.2175314
    Kieu, L. M., Bhaskar, A., & Chung, E. (2015). Passenger Segmentation Using Smart Card Data. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1537-1548. https://doi.org/10.1109/TITS.2014.2368998
    Kim, J., Corcoran, J., & Papamanolis, M. (2017). Route choice stickiness of public transport passengers: Measuring habitual bus ridership behaviour using smart card data. Transportation Research Part C: Emerging Technologies, 83, 146-164. https://doi.org/https://doi.org/10.1016/j.trc.2017.08.005
    Kong, X. J., Xia, F., Ma, K., Li, J. X., & Yang, Q. Y. (2019). Discovering Transit-Oriented Development Regions of Megacities Using Heterogeneous Urban Data [Article]. Ieee Transactions on Computational Social Systems, 6(5), 943-955. https://doi.org/10.1109/tcss.2019.2919960
    Lai, J., Cheng, T., & Lansley, G. (2017). Improved targeted outdoor advertising based on geotagged social media data. Annals of GIS, 23(4), 237-250. https://doi.org/10.1080/19475683.2017.1382571
    Lan, F., Gong, X., Da, H., & Wen, H. (2020). How do population inflow and social infrastructure affect urban vitality? Evidence from 35 large- and medium-sized cities in China. Cities, 100, 102454. https://doi.org/https://doi.org/10.1016/j.cities.2019.102454
    Lang, W., Chen, T., Chan, E. H. W., Yung, E. H. K., & Lee, T. C. F. (2019). Understanding livable dense urban form for shaping the landscape of community facilities in Hong Kong using fine-scale measurements. Cities, 84, 34-45. https://doi.org/https://doi.org/10.1016/j.cities.2018.07.003
    Lang, W., Hui, E. C. M., Chen, T., & Li, X. (2020). Understanding livable dense urban form for social activities in transit-oriented development through human-scale measurements. Habitat International, 104, 102238. https://doi.org/https://doi.org/10.1016/j.habitatint.2020.102238
    Litman, T. (2008). Land Use Impacts on Transport How Land Use Factors Affect Travel Behavior.
    Ma, X., Liu, C., Wen, H., Wang, Y., & Wu, Y.-J. (2017). Understanding commuting patterns using transit smart card data. Journal of Transport Geography, 58, 135-145. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2016.12.001
    Ma, X., Wu, Y.-J., Wang, Y., Chen, F., & Liu, J. (2013). Mining smart card data for transit riders’ travel patterns. Transportation Research Part C: Emerging Technologies, 36, 1-12. https://doi.org/https://doi.org/10.1016/j.trc.2013.07.010
    Mahrsi, K. E., Côme, E., Oukhellou, L., & Verleysen, M. (2017). Clustering smart card data for urban mobility analysis. IEEE Transactions on intelligent transportation systems, 18.
    Miller, H. J. (2008). Time Geography. In S. Shekhar & H. Xiong (Eds.), Encyclopedia of GIS (pp. 1151-1156). Springer US. https://doi.org/10.1007/978-0-387-35973-1_1383
    Miller, H. J. (2017). Time geography and space-time prism. International encyclopedia of geography: People, the earth, environment and technology, 1.
    Moghadam, A. S., Soltani, A., Parolin, B., & Alidadi, M. (2018). Analysing the space-time dynamics of urban structure change using employment density and distribution data [Article]. Cities, 81, 203-213. https://doi.org/10.1016/j.cities.2018.04.009
    Ning, J., Lyu, T., & Wang, Y. (2021). Exploring the Built Environment Factors in the Metro That Influence the Ridership and the Market Share of the Elderly and Students. Journal of Advanced Transportation, 2021, 9966794. https://doi.org/10.1155/2021/9966794
    Pan, H., Li, J., Shen, Q., & Shi, C. (2017). What determines rail transit passenger volume? Implications for transit oriented development planning. Transportation Research Part D: Transport and Environment, 57, 52-63. https://doi.org/10.1016/j.trd.2017.09.016
    Phani Kumar, P., Ravi Sekhar, C., & Parida, M. (2020). Identification of neighborhood typology for potential transit-oriented development. Transportation Research Part D: Transport and Environment, 78, 102186. https://doi.org/https://doi.org/10.1016/j.trd.2019.11.015
    Pieroni, C., Giannotti, M., Alves, B. B., & Arbex, R. (2021). Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city. Journal of Transport Geography, 96, 103203. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2021.103203
    Rodrigue, J.-P. (2009). The geography of transport systems. London: Routledge.
    Shao, F. J., Sui, Y., Yu, X., & Sun, R. C. (2019). Spatio-temporal travel patterns of elderly people - A comparative study based on buses usage in Qingdao, China [Article]. Journal of Transport Geography, 76, 178-190. https://doi.org/10.1016/j.jtrangeo.2019.04.001
    Shen, P., Ouyang, L., Wang, C., Shi, Y., & Su, Y. (2020). Cluster and characteristic analysis of Shanghai metro stations based on metro card and land-use data. Geo-spatial Information Science, 23(4), 352-361. https://doi.org/10.1080/10095020.2020.1846463
    Shevky, E. (1955). Social area analysis; theory, illustrative application and computational procedure.
    Singh, Y. J., Fard, P., Zuidgeest, M., Brussel, M., & Maarseveen, M. v. (2014). Measuring transit oriented development: a spatial multi criteria assessment approach for the City Region Arnhem and Nijmegen. Journal of Transport Geography, 35, 130-143. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2014.01.014
    Stjernborg, V., Wretstrand, A., & Tesfahuney, M. (2015). Everyday Life Mobilities of Older Persons – A Case Study of Ageing in a Suburban Landscape in Sweden. Mobilities, 10(3), 383-401. https://doi.org/10.1080/17450101.2013.874836
    Sui, D., Elwood, S., & Goodchild, M. (2012). Crowdsourcing geographic knowledge: volunteered geographic information (VGI) in theory and practice. Springer Science & Business Media.
    Sung, H., & Oh, J.-T. (2011). Transit-oriented development in a high-density city: Identifying its association with transit ridership in Seoul, Korea. Cities, 28(1), 70-82.
    Tao, S., Rohde, D., & Corcoran, J. (2014). Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap. Journal of Transport Geography, 41, 21-36. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2014.08.006
    Wang, D., Li, F., & Chai, Y. (2012). Activity Spaces and Sociospatial Segregation in Beijing. Urban Geography, 33(2), 256-277. https://doi.org/10.2747/0272-3638.33.2.256
    Wu, C., Ye, X., Ren, F., & Du, Q. (2018). Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China. Cities, 77, 104-116. https://doi.org/https://doi.org/10.1016/j.cities.2018.01.017
    Xiao, L., Lo, S., Liu, J., Zhou, J., & Li, Q. (2021). Nonlinear and synergistic effects of TOD on urban vibrancy: Applying local explanations for gradient boosting decision tree. Sustainable Cities and Society, 72, 103063. https://doi.org/https://doi.org/10.1016/j.scs.2021.103063
    Yang, X., Fang, Z., Yin, L., Li, J., Lu, S., & Zhao, Z. (2019). Revealing the relationship of human convergence–divergence patterns and land use: A case study on Shenzhen City, China. Cities, 95, 102384. https://doi.org/https://doi.org/10.1016/j.cities.2019.06.015
    Yanwei, C., Yue, S., Xiujun, M., & Ying, Z. (2013). The collection and management of space-time data of individual behavior based on location-based technologies: A case study of activity-travel survey in Beijing. Geographical Research, 32(3), 441-451.
    Yu, W., Bai, H., Chen, J., & Yan, X. (2019). Analysis of Space-Time Variation of Passenger Flow and Commuting Characteristics of Residents Using Smart Card Data of Nanjing Metro. Sustainability, 11(18). https://doi.org/10.3390/su11184989
    Yu, Z., Zhu, X., & Liu, X. (2022). Characterizing metro stations via urban function: Thematic evidence from transit-oriented development (TOD) in Hong Kong. Journal of Transport Geography, 99, 103299. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2022.103299
    Yuan, Y., & Raubal, M. (2016). Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study. International Journal of Geographical Information Science, 30(8), 1594-1621. https://doi.org/10.1080/13658816.2016.1143555
    Zemp, S., Stauffacher, M., Lang, D. J., & Scholz, R. W. (2011). Generic functions of railway stations—A conceptual basis for the development of common system understanding and assessment criteria. Transport Policy, 18(2), 446-455. https://doi.org/https://doi.org/10.1016/j.tranpol.2010.09.007
    Zhang, S. Q., Yang, Y., Zhen, F., Lobsang, T., & Li, Z. X. (2021). Understanding the travel behaviors and activity patterns of the vulnerable population using smart card data: An activity space-based approach [Article]. Journal of Transport Geography, 90, 16, Article 102938. https://doi.org/10.1016/j.jtrangeo.2020.102938
    Zhang, W. J., & Chai, Y. W. (2008). Theories and confirmed model of urban resident's travel demand: Considering intra-household interaction. Acta Geographica Sinica, 63(12), 1246-1256.
    Zhang, Y., & Chai, Y. W. (2011). The spatio-temporal activity pattern of the middle and the low-income residents in Beijing, China. Scientia Geographica Sinica, 31(9), 1056-1064.
    Zhang, Y., Li, C., Song, Y., Chai, Y., & Fan, Y. (2022). Personalizing the dichotomy of fixed and flexible activities in everyday life: deriving prism anchors from GPS-enabled survey data. Transportation. https://doi.org/10.1007/s11116-022-10352-2
    Zhou, Y., Fang, Z., Zhan, Q., Huang, Y., & Fu, X. (2017). Inferring Social Functions Available in the Metro Station Area from Passengers’ Staying Activities in Smart Card Data. ISPRS International Journal of Geo-Information, 6(12). https://doi.org/10.3390/ijgi6120394
    Zhou, Y., Thill, J.-C., Xu, Y., & Fang, Z. (2021). Variability in individual home-work activity patterns. Journal of Transport Geography, 90, 102901. https://doi.org/https://doi.org/10.1016/j.jtrangeo.2020.102901

    下載圖示
    2024-07-31公開
    QR CODE