簡易檢索 / 詳目顯示

研究生: 吳祐欣
Wu, You-Sin,
論文名稱: 以MODIS Aqua海洋水色衛星影像評估台灣近岸水質
Estimating the spatial and temporal distributions of water quality parameters in coastal areas from enhanced MODIS-Aqua ocean color product
指導教授: 張智華
Chang, Chih-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 143
中文關鍵詞: MODIS大氣校正近岸海域遙測水質水質評估時空分佈
外文關鍵詞: MODIS, atmospheric correction, Remote sensing, Coastal assessment, Suspended solids (SS), Chlorophyll-a (Chl-a)
相關次數: 點閱:117下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近岸水體包含多樣豐富的生態系統,具備漁業、經濟及遊憩價值,台灣四面環海,擁有利用海水資源的優勢,然而近幾十年來海洋環境的健康和生產能力都面臨重大威脅,其中一重要原因為緊鄰陸地,水體水質易受人為活動所影響。為有效保護海岸水質、生態系統與經濟遊憩發展,監測並管理水質是必需的。近岸水質狀況及其變化趨勢需要長時間且大範圍全面性地進行監測,而近岸水體利用傳統監測方式耗時且費力,資料在時空分布特性上會受到限制,其資料代表性必然不夠完整,如能用遙測方式加以觀測,並提升遙測影像品質,以獲取更為全面的近岸水質資訊。
    本研究區域為台灣各縣市近岸海域,以內政部公告之海岸地區範圍為基準,利用NASA (National Aeronautics and Space Administration) Aqua衛星所搭載之MODIS (Moderate-Resolution Imaging Spectroradiometer)感測器遙測影像進行台灣近岸水質分析,監測近岸葉綠素a (Chl-a)及懸浮固體物 (SS)濃度之時空分布特性。本研究首先運用2003至2013年MODIS Aqua遙測影像共約4,950幅影像,以Level 1A形式將資料彙整下載,修正其大氣校正方法以及選擇不同的演算法進行水質反算,並使用SeaDAS(SeaWiFS Data Analysis System)軟體以及搭配批次生產系統SeaBatch腳本,批次處理成Level 2含各水色產品之遙測影像,所得水質參數包含:葉綠素a(Chl-a)、總懸浮物質(TSM)、漫射衰減係數(Kd(490))、粒狀有機碳(POC)、粒狀無機碳(PIC)、遙測反射率Rrs(λ)、離水輻射強度nLw(λ)、各項IOP產品、有光層深度(Zeu)等。
    經由影像再處理,調整NIR-SWIR大氣校正方法以及雲覆遮罩參數的取消,結果顯示近岸影像資料相比標準產品提升約10%,尤其是西部沿海岸地形較為破碎區域,且藉由多期影像組合,並改善組合手法後能得到更完整台灣近岸水質資訊。葉綠素演算法比較部分則藉由不同公式所演算葉綠素a濃度,選擇結果最接近環保署測值之OC3M演算法。
    其次,利用已驗證之遙測水色影像,每年八天為單位組合後46幅,11年共506幅影像,針對葉綠素a及總懸浮固體物利用ArcGIS軟體對縣市海域範圍內水質參數進行時、空統計分析,並以水質分布盒鬚圖呈現。在空間分布方面,葉綠素a及懸浮固體物濃度為中部海域大於南部海域,再者是北部海域,水質情況最佳為東部海域。在時間趨勢方面,西岸海域在2007~2010年間葉綠素a濃度偏高,而在2011~2013年有下降趨勢,懸浮固體物濃度趨勢則相反,於2010~2013年有上升趨勢;東岸水質普遍清澈乾淨,整體葉綠素a濃度較西岸為低,不過卻在2011~2013年間有上升趨勢,與西岸在同期間整體水質變化呈現相反的情況,懸浮固體物則無此現象。
    利用水色產品具有計算水質空間離散度之優勢,各海域範圍內所有水質資料統計計算所得標準差呈現東部海域水質分布較為均勻,北部新北、基隆、宜蘭也同樣標準差偏低,西岸由於受河川出海口高濁度的影響,及西部沿海工業區放流口影響所致,葉綠素a與懸浮固體物濃度呈現出較高的離散程度,水質分布是不平均的。
    最後,本研究比較現有環保署測站與分區水色產品在時間趨勢、空間分佈、季節特徵之差異。現有環保署測站多選點在河口或重要排放口附近,且採樣頻率極低,無法代表各分區水質狀況,因此,測站與水色產品於時間趨勢上無顯著相關。測站值因位於河口及資料量低,使其年間變化波動大,不易看出分區水質變化趨勢;反之,由水色產品可明顯看出近年(2010-2013)東岸Chl-a有逐年上升趨勢,且在Chl-a影像上沒有顯示出測站值呈現之西岸Chl-a下降趨勢。此外,測站值呈現之季節性Chl-a分布也與水色影像完全不同,西岸測站因受河口沖刷及採樣頻率低影響使其濃度高值多發生在雨季,但由水色產品可看出其實西岸分區Chl-a濃度因受黑潮及臺灣海峽溫暖海水的影響,常在秋、冬季有較高的Chl-a濃度。本研究發現,在沒有水色產品的輔助下,使用現有的測站水質評估各縣市海岸區域管理範圍水質,最多僅能說明東岸水質較西岸好,無法進一步看出各分區水質變動年間與季節性趨勢。
    本研究結果顯示,MODIS衛星遙測影像能有效運用於觀測台灣近岸海域之水質變化,雖然懸浮固體物濃度與實測值有落差,但卻呈現相同變化趨勢,其遙測推估濃度還是能作為水質指標參考用;葉綠素a更是能藉由時間上的資料優勢看出更細微的變動,因此遙測水色影像能反映台灣近岸在不同時間、季節所呈現之各水質參數濃度上的差異,以及做為長期監控水質變化之依據。

    More effective monitoring and management is required for the protection of coastal water quality, its ecosystems and economic development. Because traditional monitoring of coastal waters methods are time-consuming and laborious, the information on the spatial and temporal distribution characteristics often becomes limited and quickly obsolete. Because of this, such monitoring methods bring inevitably incomplete data representation. Use of remote-sensing satellite data, which can provide ocean color, sea surface temperatures and sea surface salinity imaging products, is therefore an improved method for monitoring in order to obtain more comprehensive coastal water quality information. Using Aqua satellites (NASA), which are equipped with MODIS (Moderate-Resolution Imaging Spectroradiometer) sensor for telemetry analysis, this study monitored for temporal and spatial distributions of chlorophyll a (Chl-a) and suspended solids (SS) concentrations along the coastal regions of Taiwan.
    Approximately 5,000 MODIS Level 1A images from 2003 to 2013 were used. The images were then modified for atmospheric correction, and a select subset of most optimal algorithms were chosen. Finally, for each ocean color image, SeaBatch scripts were used to run batch processing with SeaDAS software to convert Level 1A products into Level 2 products.

    摘要 I Extend Abstract IV 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 前言 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.3.1 改善近岸遙測水質影像品質之方法 3 1.3.2 以現地資料驗證再處理後遙測影像及適用性 3 1.3.3 水質評估、分析及應用 3 1.4 論文架構 4 第二章 文獻回顧 6 2.1 海岸水質 6 2.1.1 海岸水質監測現況 6 2.1.2 海岸水質評估方法 7 2.2 海洋水色產品 8 2.2.1 海洋水色衛星 9 2.2.2 海洋水色衛星產品 12 2.2.3 海洋水色衛星處理 15 2.3 遙測分析水質之原理 16 2.4 遙測海岸水質 21 2.4.1 現況之挑戰 22 2.4.2 二類水體水色反演 23 2.4.3 沿岸水域大氣校正 31 2.5 運用海洋水色產品評估海岸水質 37 2.5.1 產品空間尺度、時間尺度 40 2.5.2 產品應用範圍及運用限制 41 2.5.3 指標應用目的及分析方法 42 第三章 研究材料與方法 46 3.1 研究範圍與海域水質監測現況 46 3.2 海洋水色衛星遙測影像 50 3.2.1 MODIS-Aqua 52 3.2.2 遙測資料取得、篩選 56 3.2.3 遙測資料處理 58 3.3 大氣校正 66 3.4 水色演算法 68 3.5 ArcGIS處理 70 第四章 結果與討論 74 4.1 大氣校正與雲覆改善比較 74 4.2 葉綠素演算法比較與懸浮固體物濃度回歸結果 78 4.3 適用於台灣近海之衛星水質產品 84 4.3.1 L2 MOSAIC處理之產品與GSFC標準程序產品比較 84 4.3.2 實際網格資料差異比較 89 4.4 台灣近岸遙測水質產品之時間趨勢 90 4.4.1 葉綠素a之時間趨勢 90 4.4.2 懸浮固體物之時間趨勢 96 4.5 台灣近岸遙測水質產品之空間趨勢 100 4.5.1 葉綠素a之時間趨勢 100 4.5.2 懸浮固體物之時間趨勢 102 4.6 近海海域水質之離散程度 104 4.6.1 葉綠素a之離散程度 104 4.6.2 懸浮固體物之離散程度 105 4.7 近岸現有點測站與衛星遙測時空趨勢之差異 105 4.7.1 空間分佈之分析 106 4.7.2 時間趨勢之分析 110 4.7.3 季節性趨勢分析 119 4.8 小結 121 第五章 結論與建議 122 5.1 結論 122 5.2 建議 124 參考文獻 126 附錄一 環保署近岸水質監測點 132 附錄二 衛星影像遮罩表 138 附錄三 各直轄市、縣(市)海岸地區範圍面積統計表 141 附錄四 名詞縮寫對照表 143

    Acker, J., et al. (2008). "Remotely-sensed chlorophyll a observations of the northern Red Sea indicate seasonal variability and influence of coastal reefs." Journal of marine systems 69(3): 191-204.
    Acker, J. G., et al. (2005). "Remotely‐sensed chl a at the Chesapeake Bay mouth is correlated with annual freshwater flow to Chesapeake Bay." Geophysical research letters 32(5).
    Behrenfeld, M. J., et al. (2009). "Satellite-detected fluorescence reveals global physiology of ocean phytoplankton." Biogeosciences 6(5): 779-794.
    Bierman, P., et al. (2011). "A review of methods for analysing spatial and temporal patterns in coastal water quality." Ecological Indicators 11(1): 103-114.
    Board, S. S. (2007). Earth science and applications from space: National imperatives for the next decade and beyond, National Academies Press.
    Borja, A., et al. (2008). "Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide." Marine pollution bulletin 56(9): 1519-1537.
    Borja, A. and D. M. Dauer (2008). "Assessing the environmental quality status in estuarine and coastal systems: comparing methodologies and indices." Ecological Indicators 8(4): 331-337.
    Cai, M., et al. (2016). "Quantitative analysis of anthropogenic influences on coastal water–A new perspective." Ecological Indicators 67: 673-683.
    Cannizzaro, J. P., et al. (2008). "A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the Gulf of Mexico from remotely sensed ocean color data." Continental Shelf Research 28(1): 137-158.
    Davies-Colley, R. J., et al. (2003). Colour and clarity of natural waters, Blackburn Press.
    de Sherbinin, A., et al. (2014). "Using satellite data to develop environmental indicators." Environmental Research Letters 9(8): 084013.
    De Sherbinin, A., et al. (2013). "Indicators in practice: How environmental indicators are being used in policy and management contexts." Yale and Columbia Universities, New Haven and New York.
    Fontana, C., et al. (2009). "Assimilation of SeaWiFS chlorophyll data into a 3D-coupled physical–biogeochemical model applied to a freshwater-influenced coastal zone." Continental Shelf Research 29(11): 1397-1409.
    Feldman G. C. "Algorithm Descriptions", http://oceancolor.gsfc.nasa.gov/cms/, assessed 081116
    Hu, C., et al. (2013). "Uncertainties of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements." Remote Sensing of Environment 133: 168-182.
    Islam, M. S. and M. Tanaka (2004). "Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis." Marine pollution bulletin 48(7): 624-649.
    Kitsiou, D. and M. Karydis (2011). "Coastal marine eutrophication assessment: a review on data analysis." Environment International 37(4): 778-801.
    Lee, Z. (2006). Reports of the International Ocean-Colour Coordinating Group, IOCCG Dartmouth, NS.
    Lee, Z., et al. (2002). "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters." Applied optics 41(27): 5755-5772.
    Liu, C.-C., et al. (2009). "Using satellite observations of ocean color to categorize the dispersal patterns of river-borne substances in the Gaoping (Kaoping) River, Shelf and Canyon system." Journal of marine systems 76(4): 496-510.
    Liu, T.-K., et al. (2015). "Comprehensive assessment of coastal eutrophication in Taiwan and its implications for management strategy." Marine pollution bulletin 97(1): 440-450.
    MacDonald, D. H., et al. (2015). "Valuing coastal water quality: Adelaide, South Australia metropolitan area." Marine Policy 52: 116-124.
    Maritorena, S. and D. A. Siegel (2005). "Consistent merging of satellite ocean color data sets using a bio-optical model." Remote Sensing of Environment 94(4): 429-440.
    Merging, O.-C. D. (2007). "Reports of the International Ocean-Colour Coordinating Group."
    Moore, T. S., et al. (2009). "A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product." Remote Sensing of Environment 113(11): 2424-2430.
    Morel, A. and L. Prieur (1977). "Analysis of variations in ocean color." Limnology and oceanography 22(4): 709-722.
    O'Reilly, J. E., et al. (1998). "Ocean color chlorophyll algorithms for SeaWiFS." Journal of Geophysical Research: Oceans 103(C11): 24937-24953.
    Odermatt, D., et al. (2012). "Review of constituent retrieval in optically deep and complex waters from satellite imagery." Remote Sensing of Environment 118: 116-126.
    Ostendorf, B. (2011). "Overview: Spatial information and indicators for sustainable management of natural resources." Ecological Indicators 11(1): 97-102.
    Pauly, D., et al. (2002). "Towards sustainability in world fisheries." Nature 418(6898): 689-695.
    Rabalais, N. N., et al. (2007). "Hypoxia in the northern Gulf of Mexico: Does the science support the plan to reduce, mitigate, and control hypoxia?" Estuaries and Coasts 30(5): 753-772.
    Rees, H. L., et al. (2008). "Environmental indicators: utility in meeting regulatory needs. An overview." ICES Journal of Marine Science: Journal du Conseil 65(8): 1381-1386.
    Revenga, C. (2005). "Developing indicators of ecosystem condition using geographic information systems and remote sensing." Regional Environmental Change 5(4): 205-214.
    Robinson, I. (1985). "Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A review: By HR Gordon and AY Morel. Springer‐Verlag, Berlin, 1983. Pp. 114. DM 58 (approx. US $22.5)." Quarterly Journal of the Royal Meteorological Society 111(469): 872-872.
    Sathyendranath, S. (2000). "Reports of the International Ocean-Colour Coordinating Group." IOCCG, Dartmouth, Canada 3: 140.
    Schaeffer, B. A., et al. (2012). "An approach to developing numeric water quality criteria for coastal waters using the SeaWiFS satellite data record." Environmental science & technology 46(2): 916-922.
    Shi, W. and M. Wang (2007). "Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing." Remote Sensing of Environment 110(2): 149-161.
    Thomas, A. C. and R. A. Weatherbee (2006). "Satellite-measured temporal variability of the Columbia River plume." Remote Sensing of Environment 100(2): 167-178.
    TaiwanEPA. (2013) "環境水質監測查詢: 海域", http://oceancolor.gsfc.nasa.gov/cms/, assessed 081116
    Wang, M. and W. Shi (2005). "Estimation of ocean contribution at the MODIS near‐infrared wavelengths along the east coast of the US: Two case studies." Geophysical research letters 32(13).
    Wang, M. and W. Shi (2006). "Cloud masking for ocean color data processing in the coastal regions." IEEE Transactions on Geoscience and Remote Sensing 44(11): 3196-3105.
    Wang, M. and W. Shi (2007). "The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing." Optics Express 15(24): 15722-15733.
    Wang, M., et al. (2009). "Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data." Remote Sensing of Environment 113(3): 635-644.
    Werdell, P. J., et al. (2010). "Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay." Remote Sensing of Environment 114(10): 2238-2247.
    Werdell, P. J., et al. (2013). "Generalized ocean color inversion model for retrieving marine inherent optical properties." Applied optics 52(10): 2019-2037.
    王驥魁 and 康哲銓 (2009). "利用 MODIS 影像推估台灣沿岸海水透視度." Journal of Photogrammetry and Remote Sensing 14(4): 317-332.
    吳栢兆 (2014). "河口與近海環境懸浮顆粒物質之探討: 顆粒性有機物之來源及懸浮顆粒之重量法測定; Suspended Particulate Matter in the estuarine and coastal environments: origin of organic matter determined from isotopic composition and gravimetric determination of suspended solid."
    張智華 (2008). 非點源污染負荷模式及水質生光模式之結合與應用, 國立成功大學: 環境工程學系研究所, 博士論文, 台南.
    黃韋旻 (2015). "以比濃度固有光學性質建立水庫水色及透明度模式之研究." 成功大學環境工程學系學位論文: 1-166.
    黃慶祥 (2006). "水庫水質與光學性質模式之建立及其應用." 成功大學環境工程學系學位論文: 1-152.
    楊凱傑 (2012). "運用雙衛星平台遙測影像建立沿岸水體高時空分辨率總懸浮物質分佈圖: 以高屏河口為例." 成功大學環境工程學系學位論文: 1-151.
    張智華 (2015). "運用海洋水色衛星資料建立進岸水體水質環境指標.", MOST 104-2221-E-006-022.
    行政院環保署 (2002). "台灣地區環境水質監測年報: 海域水質篇."
    內政部營建署 (2015). "海岸地區範圍圖圖冊."

    下載圖示 校內:2019-08-15公開
    校外:2019-08-15公開
    QR CODE