| 研究生: |
李易遐 Li, I-Hsia |
|---|---|
| 論文名稱: |
探討IRSp53在大腸癌細胞增生和運動中所扮演的角色 Studying the role of IRSp53 in cell proliferation and motility in colorectal cancer cells |
| 指導教授: |
呂增宏
Leu, Tzeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | IRSp53 、human IRSp53 isoforms 、細胞生長 、細胞移動 |
| 外文關鍵詞: | IRSp53, human IRSp53 isoforms, cell proliferation, cell motility |
| 相關次數: | 點閱:125 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先前研究發現IRSp53 (Insulin Receptor tyrosine kinase Substrate Protein of 53 kDa)為Eps8 (EGF receptor pathway substrate NO.8)的結合蛋白質,並且Eps8- IRSp53的結合會參與在v-Src細胞的轉型當中於是我們想進一步探討IRSp53是否會參與在大腸癌細胞的增生和運動過程中。目前已知IRSp53具有四種人類異構物 (IRSp53S, IRSp53T, IRSp58M, and IRSp53L),然而對於這些異構物的功能尚未清楚,因此也想探討不同異構物在其中所扮演的角色。我們首先利用shRNA去抑制大腸癌細胞SW620中IRSp53的表現量,由實驗結果發現當降低IRSp53的表現量後,細胞生長情形有減緩的現象。此外,在SW620細胞中當降低IRSp53的表現量後,Pi-Y416 Src的表現量也跟著受到抑制。在WST-1 cell viability assay中,降低SW620細胞中IRSp53的表現量,可能增進其對化療藥物的化學敏感度,然而在wound healing assay結果發現,降低IRSp53蛋白表現量的SW620細胞株中其wound closure百分比相較於Ctrl細胞株並沒有顯著的差異。另一方面,我們也透過外送不同人類 IRSp53 異構物的質體進入IRSp53表達量少的SW480細胞中去觀察其對於細胞功能上的影響,由實驗結果發現到當外送Myc-tagged human IRSp53S和IRSp53S-YA mutant (缺乏C端與Eps8結合區域之序列)進入SW480細胞,Src,Pi-Y416 Src 和 Pi-Y861 FAK的表現量都有增加的現象,然而外送Myc-tagged human IRSp58M入SW480細胞,則沒有明顯變化。並且在外送IRSp53S入SW480細胞後,細胞生長速率有增加的趨勢,然而外送IRSp53S-YA mutant入SW480細胞,則沒有此現象。在wound healing assay結果發現,無論外送IRSp53S,IRSp53S-YA mutant以及IRSp58M皆使細胞移動爬行變慢,其中又以IRSp53S-YA mutant細胞株爬行速率最慢。因此我們認為IRSp53S可能參與在調控Src的活性以及影響相關細胞生長路徑,但是對於細胞的移動可能不是促進的角色。
Previous studies showed that IRSp53 (Insulin Receptor tyrosine kinase Substrate Protein of 53 kDa) was identified as one of the Eps8-binding partners. The interaction between Eps8 and IRSp53 contributed to Src-mediated transformation. There are at least four IRSp53 isoforms (IRSp53S, IRSp53T, IRSp58M, and IRSp53L) identified in human cells. However, the detailed functions of these isoforms remain largely unknown. Therefore, we wanted to address the importance of IRSp53 and these isoforms in cell proliferation and motility in colorectal cancer cells. First, we generated IRSp53 knockdown cells from SW620 colon cancer cells and observed both anchorage-dependent and -independent growth were reduced. In addition, IRSp53 attenuation resulted in reduced Src activity. In WST-1 cell viability assay, IRSp53 depletion might increase chemosensitivity in colon cancer cells under the treatment of anti-cancer drug oxaliplatin. In wound healing assay, there were no significant differences between IRSp53 knockdown cells and Ctrl cells. On the other hand, overexpression of myc-tagged human IRSp53S and IRSp53S-YA mutant (Eps8-binding detective mutant) but not IRSp58M in SW480 colon cancer cells resulted in elevated expression of Src,Pi-Y416 Src and Pi-Y861 FAK. However, IRSp53S, but not its YA mutant increased cell growth in SW480 cells. We also found decreased cell motility in both IRSp53S- and IRSp58M-overpressing cells. Overexpression of IRSp53S-YA mutant showed the slowest cell motility. In conclusion, IRSp53S may play a positive role in cell proliferation but not motility in colon cancer cells.
Biesova Z, Piccoli C, Wong WT (1997). Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14: 233-241.
Bockmann J, Kreutz MR, Gundelfinger ED, Bockers TM (2002). ProSAP/Shank postsynaptic density proteins interact with insulin receptor tyrosine kinase substrate IRSp53. J Neurochem 83: 1013-1017.
Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF et al (1999). Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97: 865-875.
Chen YJ, Shen MR, Maa MC, Leu TH (2008). Eps8 decreases chemosensitivity and affects survival of cervical cancer patients. Mol Cancer Ther 7: 1376-1385.
Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT et al (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J 12: 3799-3808.
Fujiwara T, Mammoto A, Kim Y, Takai Y (2000). Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochem Biophys Res Commun 271: 626-629.
Funato Y, Terabayashi T, Suenaga N, Seiki M, Takenawa T, Miki H (2004). IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res 64: 5237-5244.
Govind S, Kozma R, Monfries C, Lim L, Ahmed S (2001). Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J Cell Biol 152: 579-594.
Karlsson T, Songyang Z, Landgren E, Lavergne C, Di Fiore PP, Anafi M et al (1995). Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene 10: 1475-1483.
Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A (2001). Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol 11: 1645-1655.
Leu TH, Yeh HH, Huang CC, Chuang YC, Su SL, Maa MC (2004). Participation of p97Eps8 in Src-mediated transformation. J Biol Chem 279: 9875-9881.
Liu PS, Jong TH, Maa MC, Leu TH (2010). The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation. Oncogene 29: 3977-3989.
Maa MC, Lai JR, Lin RW, Leu TH (1999). Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys Acta 1450: 341-351.
Maa MC, Hsieh CY, Leu TH (2001). Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20: 106-112.
Maa MC, Lee JC, Chen YJ, Lee YC, Wang ST, Huang CC et al (2007). Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem 282: 19399-19409.
Matoskova B, Wong WT, Salcini AE, Pelicci PG, Di Fiore PP (1995). Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation. Mol Cell Biol 15: 3805-3812.
Matoskova B, Wong WT, Seki N, Nagase T, Nomura N, Robbins KC et al (1996). RN-tre identifies a family of tre-related proteins displaying a novel potential protein binding domain. Oncogene 12: 2563-2571.
Mattila PK, Pykalainen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E et al (2007). Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176: 953-964.
Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ, Machesky LM et al (2005). Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24: 240-250.
Miyahara A, Okamura-Oho Y, Miyashita T, Hoshika A, Yamada M (2003). Genomic structure and alternative splicing of the insulin receptor tyrosine kinase substrate of 53-kDa protein. J Hum Genet 48: 410-414.
Mongiovi AM, Romano PR, Panni S, Mendoza M, Wong WT, Musacchio A et al (1999). A novel peptide-SH3 interaction. EMBO J 18: 5300-5309.
Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K et al (1997). A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15: 2145-2150.
Oda K, Shiratsuchi T, Nishimori H, Inazawa J, Yoshikawa H, Taketani Y et al (1999). Identification of BAIAP2 (BAI-associated protein 2), a novel human homologue of hamster IRSp53, whose SH3 domain interacts with the cytoplasmic domain of BAI1. Cytogenet Cell Genet 84: 75-82.
Okamura-Oho Y, Miyashita T, Ohmi K, Yamada M (1999). Dentatorubral-pallidoluysian atrophy protein interacts through a proline-rich region near polyglutamine with the SH3 domain of an insulin receptor tyrosine kinase substrate. Hum Mol Genet 8: 947-957.
Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S et al (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401: 290-293.
Sekerkova G, Loomis PA, Changyaleket B, Zheng L, Eytan R, Chen B et al (2003). Novel espin actin-bundling proteins are localized to Purkinje cell dendritic spines and bind the Src homology 3 adapter protein insulin receptor substrate p53. J Neurosci 23: 1310-1319.
Summy JM, Gallick GE (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22: 337-358.
Xu M, Shorts-Cary L, Knox AJ, Kleinsmidt-DeMasters B, Lillehei K, Wierman ME (2009). Epidermal growth factor receptor pathway substrate 8 is overexpressed in human pituitary tumors: role in proliferation and survival. Endocrinology 150: 2064-2071.
Yamagishi A, Masuda M, Ohki T, Onishi H, Mochizuki N (2004). A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem 279: 14929-14936.
Yap LF, Jenei V, Robinson CM, Moutasim K, Benn TM, Threadgold SP et al (2009). Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene 28: 2524-2534.
Yeh TC, Ogawa W, Danielsen AG, Roth RA (1996). Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J Biol Chem 271: 2921-2928.