簡易檢索 / 詳目顯示

研究生: 盧廷藏
Lu, Ting-Chang
論文名稱: 燃油飛灰中未燃碳活化活化行為之研究
The activation of the unburned carbon from oil-fired fly ash
指導教授: 蔡敏行
Tsai, Ming-Shing
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 67
中文關鍵詞: 飛灰活化未然碳
外文關鍵詞: unburned carbon, activation, fly ash
相關次數: 點閱:124下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   燃油飛灰中的未燃碳是一種顆粒微細、易隨風飛揚的碳質粉末,易引發環境污染問題,最近研究證實此未燃碳組成的粉末具有如活性碳般的吸附能力,可吸附染料廢水達到脫色之效果,惟其吸附容量偏低,故尚無實際商業利用之實例。因此,本研究參考活性碳之活化製程,對此未燃碳粉末進行物理活化及化學活化實驗,藉以提昇未燃碳對酸性染料的吸附量。

      研究結果發現,在化學活化方面,未燃碳與一般製造活性碳的碳質原料差異甚大,其碳化程度較一般製造活性碳的碳質原料為高,且幾乎不含焦油等易被活化的成份,所以經KOH、ZnCl2、表面改質等化學活化後,活化藥劑未能滲入未燃碳粉末內,僅略與碳表面反應,產生一些新的表面官能基,因此在碳粒表面結構和比表面積並沒有明顯改變之狀況下,而對染料吸附量有略為提升的現象。另外,在CO2物理活化方面,經CO2處理過後的未然碳粒的表面結構有較顯著的變化,中孔比例明顯提高,使得表面積增加;於950~1100℃活化後,每一處理溫度所得產物的比表面積都有隨著活化時間的增加而提高至一最大值的趨勢,且在處理溫度範圍內,越高溫處理其最大值越高。其中1100℃活化處理前後,比表面積由18 m2/g增為118m2/g,約提高為一般商業活性碳的1/8。由比表面積和吸附量之線性關係,可知比表面積越高對應的染料吸附量也越高,1100℃活化處理後之單位吸附量可提升為420mg/g,約為活性碳的3/4。

      The unburned carbon from oil-fired fly ash is a kind of carbonaceous powder, which is liable to cause environmental pollution. Recent studies confirm that unburned carbon powder has such adsorptive ability as activated carbon ,and it can adsorb dyeing waste water to decolor . However, the adsorptive amount is small, so there is no example for commercial usage. Therefore, to promote the adsorptive amount of unburned carbon on acid dyes, this study refers to the activation process of activated carbon, and performed physical and chemical activation experiments on unburned carbon powder.

      The results shoes, on chemical activation, the unburned carbon differs greatly from the commercial activated carbon. Its level of carbonization is higher and it hardly contains activated ingredients like tar. Consequently, through chemical activation such as KOH,ZnCl2,and the modification of surface, the chemical reagents fail to permeate the unburned carbon powder; it reacts slightly to the carbon surface and produces some new surface function groups. Hence, the unburned carbon promotes slightly the adsorptive amount of dyes, under the condition that there is no remarkable change on the surface structure and specific surface area of the unburned carbon. On CO2 physical activation, after the disposal of CO2 ,there are remarkable changes on the surface structure of the unburned carbon powder:the middle-pore proportion obviously raise, and the specific surface area increases. After the activation of 950~1100℃,each product’s specific surface area tends to enlarge to a maximum with the activation time. Among the disposing temperature, the maximum raises with the temperature. At 1100℃, the specific surface area increases from 18 m2/g to 118 m2/g ; the adsorptive amount is one-eighth of the commercial activated carbon . According to the linear relation between surface area and adsorptive amount, we can find that the larger the specific area the higher the adsorptive amount of the dye .After the activation of 1100℃, the adsorptive amount raises to 420 mg/g , about three-fourths of the commercial activated carbon .

    摘要 I Abstract II 目錄 Ⅳ 圖目錄 VII 表目錄 IX 第一章 緒論 1 第二章 理論基礎 4   2-1 碳材料概述 4   2-2 活化製程概述 6     2-2-1 碳化 7     2-2-2 化學活化 7     2-2-3 物理活化 8   2-3 吸附理論 10     2-3-1 Langmuir等溫吸附摸式 10     2-3-2 BET等溫吸附模式 11     2-3-3 等溫吸附曲線 11   2-4 影響吸附因子 14     2-4-1 比表面積及孔徑分佈 14     2-4-3 表面所帶官能基及極性 15     2-4-4 吸附質特性 15 第三章 實驗方法與步驟 17   3-1 樣品準備 17   3-2 實驗流程 17   3-3 物化性質分析方法 17     3-3-1 碳、氫、氮、硫成分分析 17     3-3-2 X-ray繞射分析 19     3-3-3 熱重分析 19     3-3-4 表面積分析法 19     3-3-5 外觀觀察 19     3-3-6 表面官能基分析 19     3-3-7 粒徑分析 20     3-3-8 灰份測定 20   3-4活化處理 20     3-4-1化學活化 20     3-4-2 表面改質處理 21     3-4-3 物理活化處理 21   3-5 等溫吸附實驗 22 第四章 結果與討論 24   4-1 未燃碳性質分析 24     4-1-1 化學組成 24     4-1-2 粒徑分布與外觀 25     4-1-3 孔徑分布 25   4-2 化學活化處理 28     4-2-1 ZnCl2活化處理 29     4-2-2 KOH活化處理 32     4-2-3 表面改質處理 35   4-3 物理活化處理 40     4-3-1 重量損失變化 41     4-3-2 對酸性染料的吸附結果分析 41     4-3-3 未燃碳的SEM觀察 46     4-3-4 表面積與吸附量之關係 50     4-3-5 表面結構變化 52   4-4 討論 56 第五章 結論與建議 63   5-1 結論 63   5-2 建議 63 圖目錄 圖 1 碳材結構圖(10) 5 圖 2 FRANKLIN石墨化碳示意圖(11) 5 圖 3活性碳的孔隙分佈(12) 6 圖 4等溫吸附的六種型態(16) 13 圖 5 活性碳的孔徑分佈 15 圖 6實驗流程圖 18 圖 7未燃碳樣品的外觀。 25 圖 8未燃碳的孔徑分佈圖 27 圖 9未燃碳與活性碳對酸性染料之等溫吸附圖 27 圖 10ZNCL2活化處理過後未燃碳的孔徑分佈 31 圖 11 ZNCL2活化處理未燃碳的SEM顯微外觀 32 圖 12 KOH活化處理未燃碳的SEM外觀, 34 圖 13 KOH活化未燃碳的孔徑分佈 34 圖 14 液相活化未燃碳的等溫吸附圖 37 圖 15 表面改質處理後SEM 外觀 38 圖 16 表面改質後的表面官能基圖 39 圖 17 未燃碳在CO2的熱解行為 40 圖 18 各溫度下樣品重量損失率與時間之關係 42 圖 19 物理活化未燃碳各溫度的擴散現象 42 圖 20 950℃物理活化產物對酸性染料之等溫吸附圖 43 圖 21 1000℃物理活化產物對酸性染料之等溫吸附圖 44 圖 22 1050℃物理活化產物對酸性染料之等溫吸附圖 44 圖 23 1100℃物理活化產物對酸性染料之等溫吸附圖 45 圖 24 各溫度下所得活化產物的吸附量與時間之關係 45 圖 25 950℃物理活化後產物外觀 47 圖 26 1100℃物理活化後產物的外觀 48 圖 27 1100℃物理活化後產物的外觀 49 圖 28 不同溫度物理活化產物比表面積與時間的變化圖 51 圖 29 不同溫度物理活化產物比表面積隨燒失率的變化圖 51 圖 30 各溫度物理活化產物比表面積與吸附量的關係 52 圖 31 1100℃物理活化處理未燃碳孔徑分佈變化圖 55 圖 32 1000℃物理活化處理未燃碳孔徑分佈變化圖 55 圖 33 BW煤化學活化後的X-RAY繞射圖 59 圖 34 物理活化碳黑的X-RAY圖 60 圖 35 石墨物理活化後的X-RAY繞射圖 61 圖 36 未燃碳的X-RAY繞射圖 62 表目錄 表 1未燃碳的化學成份 24 表 2未燃碳樣品的孔徑結構 28 表 3 不同溫度下以ZnCl2活化未燃碳的結果 30 表 4以不同藥劑比例的ZnCl2活化未燃碳之結果 30 表 5 以ZnCl2活化處理未燃碳後的孔徑分佈 31 表 6 不同溫度以KOH活化未燃碳之結果 33 表 7 不同藥劑比例KOH活化未燃碳結果 34 表 8 以KOH活化未燃碳之產物的孔徑分佈 35 表 9 液相活化未燃碳之結果 36 表 10 液相活化未燃碳的孔徑分佈 37 表 11 經1100℃活化處理後未燃碳的孔徑分佈 54 表 12 經1000℃物理活化處理後未燃碳孔徑分佈 54 表 13 各種碳化程度碳材料的活化結果比較 57

    1 Shang-Lin Tsai, 1998, “ A study on the property and resources recovery of oil-fired fly ash”, PHD thesis, National Cheng-Kung University,R.O.C

    2 Shang-Lin Tsai, Min-Shing Tsai, 1997, “Study on the physical and Chemical characteristics, yield and TCLP test of oil-fired fly Ash”,Mining & Metallurgy, Vol. 41, No. 2, P.57-68.

    3 Min-Shing Tsai and etc., “A Study on the Market Estimates and Treated Technology of the Purified Products from EP Oil-fired Fly Ash”,Monthly Journal of Taipower's Engineering, vol. P.59~75.

    4 Feng-Chin Wu;Ru-Ling Tseng,“Preparation Of Active Carbon From Wood Wastes” ,Journal Of Technology ,Vol.14,No.4,1999

    5 王旭淵,張慶源,蔡文田,“藉鉀鹽活化法從玉米穗軸研製活性碳”,國立台灣大學環境工程研究所碩士論文,1997,66 MILAN SMISEK, RNDr., SLAVOJ CERNY, RNDr., CSc. “Active Carbon, manufacture, properties and applications”, elsevier publishing company, Amsterdam-London-New York, chapter 2, 1970

    6 MILAN SMISEK, RNDr., SLAVOJ CERNY, RNDr., CSc. “Active Carbon, manufacture, properties and applications”, elsevier publishing company, Amsterdam-London-New York, chapter 2, 1970

    7 洪啟勛,“燃油飛灰處理染整廢水之研究”,國立成功大學資源工程研究所碩士論文,中華民國八十四年六月

    8 謝雅敏,“燃油飛灰中碳資源之應用研究”,國立成功大學資源工程研究所碩士論文,民國87 年6 月

    9 真田雄三,鈴木基之,藤元薰,“活性炭—基礎? 應用”,炭素材料學會編,講談社社朱式會社出版, pp.8

    10 R.Bacon, “Chemistry and Physic of Carbon,Marccel Dekker, 1973

    11 Rodríguez-Reinoso, F.; Molina-Sabio, M. Activated Carbons from Lignocellulosic Materials by Chemical and/or Physical Activation: An Overview. Carbon, 30, 1111, 1992.

    12 Lewis, I. C. Chemistry of Carbonization. Carbon, 20, 519, 1982.

    13 Ehrburger, P.; Addoun, A.; Addoun, F.; Donnet, J. B. Carbonization of Coals in The Presence of Alkaline Hydroxodes and Carbonates:Formation of Activated Carbons. Fuel, 65, 1447, 1986.

    14 王聖智,鄧熙聖, “氫氧化鉀活化酚醛樹脂以製備高孔隙活性碳”,國立成功大學化學工程研究所,1999,6

    15 楊國準,王曾輝,高普生, “碳素材料下冊”,中國物資出版社,pp.299-300

    16 Gregg, S. J.; Sing, K. S. W. Adsorption, Surface and Porosity;Academic Press: London, 1982.

    17 立本英機,“活性炭收著法? ? ? 處理? 關? ? 研究”,昭和51 年4月

    18 蔣本基等,“工業廢水活性碳處理”,工業污染防治技術手冊之七,經濟部工業污染防治技術服務團、財團法人中國技術服務社編印,pp.8-18

    19 蕭清松,陳龍實, “利用化學方法製造活性碳”,礦業技術,1981,3,pp.49-53

    20 .P. Vinke, M. van der Eijk, M. Verbree, A. F. Voskamp, and H. Van Bekkum, “Modification of the surfaces of a gas-activated carbon and a chemically activated carbon with nitric acid, hydrochlorate, and ammonia”, Vol. 32, No. 4, pp. 675-686, 1994

    21 Wen Tien Tsai,Chung Yuan Chang, “Surface Carbon Oxide Characterization of Actived Carbons by Fouier Transform Infrared Spectroscopic Studies”,Proc. Natl. Sci. Counc. ROC,Vol. 19,No.3,1995,pp. 258-262

    22 Teng,H.,Ho,J-A,Hsu,Y-F.,Hsieh,C.-T.,Preparation of Active conbons from Bituminous Coals with CO2 Activation-1. Effect of Oxygen Content in Raw Coals . Ind.Eng.Chem.Res.35,4043,1996

    下載圖示 校內:立即公開
    校外:2003-05-21公開
    QR CODE