簡易檢索 / 詳目顯示

研究生: 吳建翰
Wu, Jian-Han
論文名稱: 空氣污染物與血糖異常及其惡化之相關性研究
Associations of Air Pollutants with Incidence and Progression of Dysglycemia
指導教授: 郭浩然
Guo, How-Ran
學位類別: 碩士
Master
系所名稱: 醫學院 - 公共衛生學系
Department of Public Health
論文出版年: 2025
畢業學年度: 114
語文別: 英文
論文頁數: 107
中文關鍵詞: 空氣污染物血糖異常雙空氣污染物模型
外文關鍵詞: air pollutants, dysglycemia, two-pollutant model
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景:糖尿病為當今重要的公共衛生議題,且造成社會醫療成本的增加。血糖異常包含糖尿病前期及糖尿病的狀態,而糖尿病前期為發展為糖尿病的病程。雖然有研究探討空氣污染物對血糖異常的影響,但皆未探討空氣污染物之間的交互作用。另一方面,鮮少研究探討空氣污染物與血糖異常惡化之間的關聯。

    研究目的:本研究旨在探討空氣污染物,包括懸浮微粒(PM10)、細懸浮微粒(PM2.5)、一氧化碳、二氧化氮、二氧化硫、臭氧,對於血糖異常發生及其惡化的相關性。

    材料與方法:本研究為回溯性世代研究。研究對象選取自2002至2017年參與美兆健康檢查的族群,排除條件為地址資料缺失者、僅參與一次健檢者、及初次健檢時自訴患有糖尿病、癌症、心血管疾病者。本研究擬以混合土地利用迴歸模型估算參與者第一次接受健檢當月及前23個月之空氣污染物之平均濃度,再以Cox迴歸分析評估各空氣污染物和血糖異常(包含糖尿病前期及糖尿病)的之發生及糖尿病前期之惡化的關聯,並評估各污染物間的相關性;若兩兩空氣污染物高度相關,則進行雙空氣污染物模型分析。

    結果:在CO暴露組中,Q3與Q4的血糖異常發生風險顯著增加 6.8%與13.9%。在PM10暴露組中,Q3與Q4的糖尿病前期惡化風險顯著上升8.9%與17.1%。PM2.5有相似的現象,其風險顯著上升15.5%與18%。此外,在雙污染物模型中發現CO與NO2之間存在交互作用。然而,本研究亦發現NO2與血糖異常的發生與惡化皆具負相關性。

    結論: 本研究顯示,氣態污染物與懸浮微粒對血糖異常具有不同的相關性。PM2.5與PM10主要與血糖異常的惡化有關,而CO則與血糖異常的發生相關,且其相關性在NO2暴露較低時更為明顯,顯示存在交互作用。然而,NO2可能對血糖異常具潛在的保護作用。

    Background: Diabetes is an important public health issue today, causing increased social and medical costs. Dysglycemia includes prediabetes and diabetes stages. Prediabetes is a pathway for the development of diabetes. Although there are studies examining the effects of air pollutants on dysglycemia, interactions of air pollutants have not been evaluated. Furthermore, few studies investigated the associations between air pollutants and the progression of dysglycemia.
    Objective: The objective of this study is to evaluate the effects of air pollutants on the incidence and progression of dysglycemia, including particulate matter (PM10), fine particulate matter (PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide, and ozone (O3).
    Material and Methods: The current study recruited participants from MJ medical examination program from 2002 to 2017. We excluded those who were lack of information on home addresses, received health examination for only once, or had been diagnosed with diabetes, cancer, or cardiovascular disease at the first health examination. The hybrid land-use regression model was used to estimate the mean exposure level of air pollutants of each individual during the month of the health examination and the 23 months prior to the examination. Cox regressions were used to evaluate the associations of air pollutants with the incidence and progression of dysglycemia. We also assessed the correlations among the pollutants and applied two-pollutant models when two air pollutants were found to be highly correlated.
    Results: The incidence of dysglycemia in the Q3 and Q4 CO exposure groups increased by 6.8% and 13.9%, respectively. Meanwhile, the risk of dysglycemia progression in the Q3 and Q4 PM10 exposure groups increased by 8.9% and 17.1%, respectively. Similarly, for PM2.5 exposure, the increased risks were 15.5% and 18%, respectively. A two-pollutant model revealed an interaction between CO and NO2. However, NO2 had a negative association with the incidence and progression of dysglycemia.
    Conclusion: The current study found that gaseous pollutants and particulate matter had different relationships with dysglycemia. PM2.5 and PM10 were associated with the risk of dysglycemia progression. CO was associated with the incidence of dysglycemia, and the increases in the risk were even larger after stratification by NO2. However, NO2 had a negative association with dysglycemia.

    摘要 i Abstract ii Acknowledgements iv List of tables vii List of figures ix Chapter 1 Introduction 1 1.1. Background and motivation 1 1.2. Research questions 2 Chapter 2 Literature review 3 2.1. Descriptive epidemiology of dysglycemia 3 2.2. Risk factors of dysglycemia 4 2.3. Analytic epidemiology of air pollutants and dysglycemia 6 2.4. Mechanism of air pollutants and dysglycemia 8 Chapter 3 Objective and Significance 11 3.1. Objective 11 3.2. Significance 11 Chapter 4 Materials and Methods 13 4.1. Study design 13 4.2. Data Sources and inclusion/exclusion criteria 13 4.3. Air pollution exposure assessment 14 4.4. Outcomes definition and covariates 14 4.5. Statistical Analysis 15 Chapter 5 Results 18 5.1. Characteristics of the study population 18 5.2. The correlation among air pollutants 19 5.3. Risks of dysglycemia incidence 19 5.4. Risks of dysglycemia progression 23 5.5. Sensitivity analysis 25 Chapter 6 Discussion 26 6.1. Comparisons with results of other studies 26 6.2. Strengths and Limitations 29 Chapter 7 Conclusion 32 Reference 33 Tables 41 Figure 92

    Aeschbacher, S., Schoen, T., Clair, C., Schillinger, P., Schönenberger, S., Risch, M., et al. (2014). Association of smoking and nicotine dependence with pre-diabetes in young and healthy adults. Swiss Medical Weekly, 144, Article w14019. https://doi.org/10.4414/smw.2014.14019
    Al-Dalain, S. M., Martínez, G., Candelario-Jalil, E., Menéndez, S., Re, L., Giuliani, A., et al. (2001). Ozone treatment reduces markers of oxidative and endothelial damage in an experimental diabetes model in rats. Pharmacological Research, 44(5), 391-396.
    Andersen, Z. J., Raaschou-Nielsen, O., Ketzel, M., Jensen, S. S., Hvidberg, M., Loft, S., et al. (2012). Diabetes incidence and long-term exposure to air pollution: A cohort study. Diabetes Care, 35(1), 92-98. https://doi.org/10.2337/dc11-1155
    Antza, C., Kostopoulos, G., Mostafa, S., Nirantharakumar, K., & Tahrani, A. (2022). The links between sleep duration, obesity and type 2 diabetes mellitus. Journal of Endocrinology, 252(2), 125-141. https://doi.org/10.1530/JOE-21-0155
    Arias-Pérez, R. D., Taborda, N. A., Gómez, D. M., Narvaez, J. F., Porras, J., & Hernandez, J. C. (2020). Inflammatory effects of particulate matter air pollution. Environmental Science And Pollution Research, 27(34), 42390-42404. https://doi.org/10.1007/s11356-020-10574-w
    Babaan, J., Hsu, F.-T., Wong, P.-Y., Chen, P.-C., Guo, Y.-L., Lung, S.-C. C., et al. (2023). A Geo-AI-based ensemble mixed spatial prediction model with fine spatial-temporal resolution for estimating daytime/nighttime/daily average ozone concentrations variations in Taiwan. Journal of Hazardous Materials, 446, Article 130749. https://doi.org/10.1016/j.jhazmat.2023.130749
    Bai, L., Chen, H., Hatzopoulou, M., Jerrett, M., Kwong, J. C., Burnett, R. T., et al. (2018). Exposure to ambient ultrafine particles and nitrogen dioxide and incident hypertension and diabetes. Epidemiology, 29(3), 323-332. https://doi.org/10.1097/EDE.0000000000000798
    Bass, V., Gordon, C. J., Jarema, K. A., MacPhail, R. C., Cascio, W. E., Phillips, P. M., et al. (2013). Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats. Toxicology and Applied Pharmacology, 273(3), 551-560. https://doi.org/10.1016/j.taap.2013.09.029
    Bhowmik, B., Siddiquee, T., Mujumder, A., Afsana, F., Ahmed, T., Mdala, I. A., et al. (2018). Serum lipid profile and its association with diabetes and prediabetes in a rural Bangladeshi population. International Journal of Environmental Research and Public Health, 15(9), Article 1944. https://doi.org/10.3390/ijerph15091944
    Bourdrel, T., Bind, M. A., Béjot, Y., Morel, O., & Argacha, J. F. (2017). Cardiovascular effects of air pollution. Archives of Cardiovascular Disease, 110(11), 634-642. https://doi.org/10.1016/j.acvd.2017.05.003
    Bowe, B., Xie, Y., Li, T.-T., Yan, Y., Xian, H., & Al-Aly, Z. (2018). The 2016 global and national burden of diabetes mellitus attributable to PM2.5 air pollution. The Lancet Planetary Health, 2(7), E301-E312. https://doi.org/10.1016/S2542-5196(18)30140-2
    Brocato, J., Sun, H., Shamy, M., Kluz, T., Alghamdi, M. A., Khoder, M. I, et al. (2014). Particulate matter from Saudi Arabia induces genes involved in inflammation, metabolic syndrome and atherosclerosis. Journal of Toxicology and Environmental Health-Part A-Current Issues, 77(13), 751-766. https://doi.org/10.1080/15287394.2014.892446
    Chen, L.-P., Zhou, Y., Li, S.-S., Williams, G., Kan, H.-D., Marks, G. B., et al. (2016). Air pollution and fasting blood glucose: A longitudinal study in China. Science of the Total Environment, 541, 750-755. https://doi.org/10.1016/j.scitotenv.2015.09.132
    Coogan, P. F., White, L. F., Yu, J., Burnett, R. T., Marshall, J. D., Seto, E., et al. (2016). Long term exposure to NO2 and diabetes incidence in the Black Women's Health Study. Environmental Research, 148, 360-366. https://doi.org/10.1016/j.envres.2016.04.021
    Dal Canto, E., Ceriello, A., Rydén, L., Ferrini, M., Hansen, T. B., Schnell, O., et al. (2019). Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. European Journal of Preventive Cardiology, 26(Suppl 2), 25-32, Article 2047487319878371. https://doi.org/10.1177/2047487319878371
    DeFronzo, R. A. (2004). Pathogenesis of type 2 diabetes mellitus. Medical Clinics of North America, 88(4), 787-835, ix. https://doi.org/10.1016/j.mcna.2004.04.013
    DeFronzo, R. A. (2009). From the Triumvirate to the Ominous Octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 58(4), 773-795. https://doi.org/10.2337/db09-9028
    Di Loreto, C., Ranchelli, A., Fanelli, C., Fatone, C., Lucidi, P., Taglioni, C., et al. (2005). Make your diabetic patients walk - Long-term impact of different amounts of physical activity on type 2 diabetes. Diabetes Care, 28(6), 1295-1302. https://doi.org/10.2337/diacare.28.6.1295
    ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., et al. (2023). 2. Classification and diagnosis of diabetes: Standards of care in diabetes-2023. Diabetes Care, 46(Suppl 1), S19-S40. https://doi.org/10.2337/dc23-S002
    Eze, I. C., Foraster, M., Schaffner, E., Vienneau, D., Héritier, H., Rudzik, F., et al. (2017). Long-term exposure to transportation noise and air pollution in relation to incident diabetes in the SAPALDIA Study. International Journal of Epidemiology, 46(4), 1115-1125. https://doi.org/10.1093/ije/dyx020
    Eze, I. C., Schaffner, E., Foraster, M., Imboden, M., Von Eckardstein, A., Gerbase, et al. (2015). Long-term exposure to ambient air pollution and metabolic syndrome in adults. PLOS ONE, 10(6), Article e0130337. https://doi.org/10.1371/journal.pone.0130337
    Feizi, A., Shahraki, P. K., Najafabadi, A. M., Iraj, B., Abyar, M., Amini, M., et al. (2023). The association of exposure to air pollution with changes in plasma glucose indices, and incidence of diabetes and prediabetes: A prospective cohort of first-degree relatives of patients with type 2 diabetes. Journal of Research in Medical Sciences, 28(1). https://doi.org/10.4103/jrms.jrms_477_22
    Gangwar, R. S., Bevan, G. H., Palanivel, R., Das, L., & Rajagopalan, S. (2020). Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biology, 34, Article 101545. https://doi.org/10.1016/j.redox.2020.101545
    Gunton, J. E. (2020). Hypoxia-inducible factors and diabetes. Journal of Clinical Investigation, 130(10), 5063-5073. https://doi.org/10.1172/JCI137556
    Guo, C.-G., Liu, Y.-F., & Zhang, F.-F. (2025). Association of air pollution with ischemic heart disease, stroke, diabetes, COPD, lung cancer, and all-cause mortality: Effect modification by pro-inflammatory diet. Global Transitions, 7, 323-332. https://doi.org/10.1016/j.glt.2025.05.002
    Guo, Y.-Q., Ji, S.-Y., Li, D., & Sang, N. (2023). Ambient NO2 exposure affects hepatic glycolipid metabolism in mice with a sex-dependent property. Journal of Hazardous Materials, 441, Article 129957. https://doi.org/10.1016/j.jhazmat.2022.129957
    Haberzettl, P., O'Toole, T. E., Bhatnagar, A., & Conklin, D. J. (2016). Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress. Environmental Health Perspectives, 124(12), 1830-1839. https://doi.org/10.1289/EHP212
    Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., & Chen, Y.-C. (2016). Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Science of the Total Environment, 541, 1139-1150. https://doi.org/10.1016/j.scitotenv.2015.09.122
    Hu, M.-X., Hao, X.-W., Zhang, Y.-Q., Sun, X.-F., Zhang, M., Zhao, J.-Y., et al. (2025). Long-term exposure to particulate air pollution associated with the progression of type 2 diabetes mellitus in China: Effect size and urban-rural disparities. BMC Public Health, 25(1), Article 1565. https://doi.org/10.1186/s12889-025-22394-z
    Huang, C.-C., Chen, T.-H., Ho, C.-H., Chen, Y.-C., Chen, R.-J., Wang, Y.-J., et al. (2022). Risks of developing diabetes and hyperglycemic crisis following carbon monoxide poisoning: A study incorporating epidemiologic analysis and animal experiment. Clinical Epidemiology, 14, 1265-1279. https://doi.org/10.2147/CLEP.S380990
    Jannasch, F., Kröger, J., & Schulze, M. B. (2017). Dietary patterns and type 2 diabetes: A systematic literature review and meta-analysis of prospective studies. Journal of Nutrition, 147(6), 1174-1182. https://doi.org/10.3945/jn.116.242552
    Jiang, Y., Pagadala, J., Miller, D., & Steinle, J. J. (2013). Reduced insulin receptor signaling in retinal Muller cells cultured in high glucose. Molecular Vision, 19, 804-811.
    Kolb, H. & Martin, S. (2017). Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Medicine, 15, Article 131. https://doi.org/10.1186/s12916-017-0901-x
    Lao, X.-Q., Guo, C., Chang, L.-Y., Bo, Y.-C., Zhang, Z.-L., Chuang, Y.-C., et al. (2019). Long-term exposure to ambient fine particulate matter (PM2.5) and incident type 2 diabetes: A longitudinal cohort study. Diabetologia, 62(5), 759-769. https://doi.org/10.1007/s00125-019-4825-1
    Li, C.-Y., Wu, C.-D., Pan, W.-C., Chen, Y.-C., & Su, H.-J. (2019). Association between long-term exposure to PM2.5 and incidence of type 2 diabetes in Taiwan: A national retrospective cohort study. Epidemiology, 30, S67-S75. https://doi.org/10.1097/EDE.0000000000001035
    Li, L., Ji, W.-D., Wang, Z., Cheng, Y.-L., Gu, K.-Y., Wang, Y.-S., et al. (2024). Air pollution and diabetes mellitus: Association and validation in a desert area in China. Journal of Clinical Endocrinology & Metabolism, 110(3), e851-e860. https://doi.org/10.1210/clinem/dgae219
    Li, M.-J., Ren, J., Sen Zhang, W., Jiang, C.-Q., Li Jin, Y., Lam, T.-H., et al. (2022). Association of alcohol drinking with incident type 2 diabetes and pre-diabetes: The Guangzhou Biobank Cohort Study. Diabetes-Metabolism Research and Reviews, 38(6), Article e3548. https://doi.org/10.1002/dmrr.3548
    Li, Y.-L., Chuang, T.-W., Chang, P.-Y., Lin, L.-Y., Su, C.-T., Chien, L.-N., et al. (2021). Long-term exposure to ozone and sulfur dioxide increases the incidence of type 2 diabetes mellitus among aged 30 to 50 adult population. Environmental Research, 194, Article 110624. https://doi.org/10.1016/j.envres.2020.110624
    Liu, F.-F., Chen, G.-B., Huo, W.-Q., Wang, C.-J., Liu, S.-Y., Li, N., et al. (2019). Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Environmental Pollution, 252, 1235-1245. https://doi.org/10.1016/j.envpol.2019.06.033
    Lung, S.-C. C., Mao, I.-F., & Liu, L.-J. S. (2007). Residents' particle exposures in six different communities in Taiwan. Science of the Total Environment, 377(1), 81-92. https://doi.org/10.1016/j.scitotenv.2007.01.092
    Münzel, T., Gori, T., Al-Kindi, S., Deanfield, J., Lelieveld, J., Daiber, A., et al. (2018). Effects of gaseous and solid constituents of air pollution on endothelial function. European Heart Journal, 39(38), 3543-3550. https://doi.org/10.1093/eurheartj/ehy481
    Maggio, C. A. & Pi-Sunyer, F. X. (2003). Obesity and type 2 diabetes. Endocrinology and Metabolism Clinics of North America, 32(4), 805-822, viii. https://doi.org/10.1016/s0889-8529(03)00071-9
    Mahat, R. K., Singh, N., Arora, M., & Rathore, V. (2019). Health risks and interventions in prediabetes: A review. Diabetes & Metabolic Syndrome-Clinical Research & Reviews, 13(4), 2803-2811. https://doi.org/10.1016/j.dsx.2019.07.041
    Malatesta, M., Tabaracci, G., & Pellicciari, C. (2024). Low-dose ozone as a eustress inducer: Experimental evidence of the molecular mechanisms accounting for its therapeutic action. International Journal of Molecular Sciences, 25(23), Article 12657. https://doi.org/10.3390/ijms252312657
    Meo, S. A., Memon, A. N., Sheikh, S. A., Rouq, F. A., Usmani, A. M., Hassan, A., et al. (2015). Effect of environmental air pollution on type 2 diabetes mellitus. European Review for Medical and Pharmacological Sciences, 19(1), 123-128.
    Miller, D. B., Snow, S. J., Henriquez, A., Schladweiler, M. C., Ledbetter, A. D., et al. (2016). Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats. Toxicology and Applied Pharmacology, 306, 47-57. https://doi.org/10.1016/j.taap.2016.06.027
    MJ Health Research Foundation. (2016). The introduction of MJ Health Database, MJ Health Research Foundation Technical Report (MJHRF-TR-01). https://www.mjhrf.org/file/file/report/MJHRF-TR-01%20MJ%20Health%20Database.pdf
    Morsy, M. D., Hassan, W. N., & Zalat, S. I. (2010). Improvement of renal oxidative stress markers after ozone administration in diabetic nephropathy in rats. Diabetology & Metabolic Syndrome, 2, Article 29. https://doi.org/10.1186/1758-5996-2-29
    Otsuka, Y. & Nakagami, T. (2022). Poor eating behaviors related to the progression of prediabetes in a Japanese population: An open cohort study. International Journal of Environmental Research and Public Health, 19(19), Article 11864. https://doi.org/10.3390/ijerph191911864
    Pan, A., Wang, Y.-L., Talaei, M., Hu, F.-B., & Wu, T.-C. (2015). Relation of active, passive, and quitting smoking with incident type 2 diabetes: A systematic review and meta-analysis. The Lancet Diabetes & Endocrinology, 3(12), 958-967. https://doi.org/10.1016/S2213-8587(15)00316-2
    Paoin, K., Ueda, K., Ingviya, T., Buya, S., Phosri, A., Seposo, X. T., et al. (2021). Long-term air pollution exposure and self-reported morbidity: A longitudinal analysis from the Thai Cohort Study (TCS). Environmental Research, 192, Article 110330. https://doi.org/10.1016/j.envres.2020.110330
    Polonsky, K. S., Given, B. D., Hirsch, L., Shapiro, E. T., Tillil, H., Beebe, C., et al. (1988). Quantitative study of insulin secretion and clearance in normal and obese subjects. Journal of Clinical Investigation, 81(2), 435-441. https://doi.org/10.1172/JCI113338
    Rajagopalan, S. & Brook, R. D. (2012). Air pollution and type 2 diabetes mechanistic insights. Diabetes, 61(12), 3037-3045. https://doi.org/10.2337/db12-0190
    Rovira, J., Domingo, J. L., & Schuhmacher, M. (2020). Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ plus model to the Camp de Tarragona County (Catalonia, Spain). Science of the Total Environment, 703, Article 135538. https://doi.org/10.1016/j.scitotenv.2019.135538
    Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, Article 107843. https://doi.org/10.1016/j.diabres.2019.107843
    Shin, J., Choi, J., & Kim, K. J. (2019). Association between long-term exposure of ambient air pollutants and cardiometabolic diseases: A 2012 Korean community health survey. Nutrition, Metabolism and Cardiovascular Diseases, 29(2), 144-151. https://doi.org/10.1016/j.numecd.2018.09.008
    Soltan-Abad, R. M., Kheirouri, S., Abbasi, M. M., Alizadeh, M., & Khordadmehr, M. (2021). Effect of sulfur dioxide exposure on histopathology and morphometry of pancreatic islet cells and glycemic indices in Wistar rats. Environmental Science and Pollution Research, 28(33), 45739-45744. https://doi.org/10.1007/s11356-021-12672-9
    Teratani, T., Morimoto, H., Sakata, K., Oishi, M., Tanaka, K., Nakada, S., et al. (2012). Dose-response relationship between tobacco or alcohol consumption and the development of diabetes mellitus in Japanese male workers. Drug and Alcohol Dependence, 125(3), 276-282. https://doi.org/10.1016/j.drugalcdep.2012.03.002
    Vazquez, G., Duval, S., Jacobs, D. R., Jr., & Silventoinen, K. (2007). Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: A meta-analysis. Epidemiologic Reviews, 29, 115-128. https://doi.org/10.1093/epirev/mxm008
    Vella, R. E., Pillon, N. J., Zarrouki, B., Croze, M. L., Koppe, L., Guichardant, et al. (2015). Ozone exposure triggers insulin resistance through muscle c-Jun N-terminal kinase activation. Diabetes, 64(3), 1011-1024. https://doi.org/10.2337/db13-1181
    Wang, Y.-X., Cao, R., Xu, Z.-H., Jin, J.-B., Wang, J.-W., Yang, T., et al. (2022). Long-term exposure to ozone and diabetes incidence: A longitudinal cohort study in China. Science of the Total Environment, 816, Article 151634. https://doi.org/10.1016/j.scitotenv.2021.151634
    Weinmayr, G., Hennig, F., Fuks, K., Nonnemacher, M., Jakobs, H., Möhlenkamp, et al. (2015). Long-term exposure to fine particulate matter and incidence of type 2 diabetes mellitus in a cohort study: Effects of total and traffic-specific air pollution. Environmental Health, 14, Article 53. https://doi.org/10.1186/s12940-015-0031-x
    Weir, G. C. & Bonner-Weir, S. (2004). Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes, 53, S16-S21. https://doi.org/10.2337/diabetes.53.suppl_3.S16
    Wong, P.-Y., Hsu, C.-Y., Wu, J.-Y., Teo, T.-A., Huang, J.-W., Guo, H.-R., et al. (2021). Incorporating land-use regression into machine learning algorithms in estimating the spatial-temporal variation of carbon monoxide in Taiwan. Environmental Modelling & Software, 139, Article 104996. https://doi.org/10.1016/j.envsoft.2021.104996
    Wong, P.-Y., Lee, H.-Y., Chen, Y.-C., Zeng, Y.-T., Chern, Y.-R., Chen, N.-T., et al. (2021). Using a land use regression model with machine learning to estimate ground level PM2.5. Environmental Pollution, 277, Article 116846. https://doi.org/10.1016/j.envpol.2021.116846
    Wong, P.-Y., Su, H.-J., Lee, H.-Y., Chen, Y.-C., Hsiao, Y.-P., Huang, J.-W., et al. (2021). Using land-use machine learning models to estimate daily NO2 concentration variations in Taiwan. Journal of Cleaner Production, 317, Article 128411. https://doi.org/10.1016/j.jclepro.2021.128411
    Wu, P.-C. & Huang, K.-F. (2021). Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Scientific Reports, 11(1), Article 7593. https://doi.org/10.1038/s41598-021-87051-y
    Wu, Y.-L., Zhang, S.-Y., Qian, S.-E., Cai, M., Li, H.-T., Wang, C.-J., et al. (2022). Ambient air pollution associated with incidence and dynamic progression of type 2 diabetes: A trajectory analysis of a population-based cohort. BMC Medicine, 20(1), Article 375. https://doi.org/10.1186/s12916-022-02573-0
    Xu, X.-H., Liu, C.-Q., Xu, Z.-B., Tzan, K., Zhong, M.-H., Wang, A.-X., et al. (2011). Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. Toxicological Sciences, 124(1), 88-98. https://doi.org/10.1093/toxsci/kfr211
    Yan, M.-M., Fu, Z., Qin, T.-T., Wu, N.-J., Lv, Y.-L., Wei, Q.-Y., et al. (2018). Associations of sleep duration and prediabetes prevalence in a middle-aged and elderly Chinese population with regard to age and hypertension: The China Health and Retirement Longitudinal Study baseline survey. Journal of Diabetes, 10(11), 847-856. https://doi.org/10.1111/1753-0407.12662
    Yan, W., Ku, T.-T., Yue, H.-F., Li, G.-K., & Sang, N. (2016). NO2 inhalation causes tauopathy by disturbing the insulin signaling pathway. Chemosphere, 165, 248-256. https://doi.org/10.1016/j.chemosphere.2016.09.063
    Zadeh, S. S. T., Khajavi, A., Ramezankhani, A., Azizi, F., & Hadaegh, F. (2023). The impact of long-term exposure to PM10, SO2, O3, NO2, and CO on incident dysglycemia: A population-based cohort study. Environmental Science and Pollution Research, 30(2), 3213-3221. https://doi.org/10.1007/s11356-022-22330-3
    Zhang, Y.-Y., Sun, Q.-S., Liu, J., & Petrosian, O. (2024a). Long-term forecasting of air pollution particulate matter (PM2.5) and analysis of influencing factors. Sustainability, 16(1), Article 19. https://doi.org/10.3390/su16010019
    Zhang, Z.-L., Luan, C., Wang, C.-Q., Li, T.-T., Wu, Y., Huang, X., et al (2024b). Insulin resistance and its relationship with long-term exposure to ozone: Data based on a national population cohort. Journal of Hazardous Materials, 472, Article 134504. https://doi.org/10.1016/j.jhazmat.2024.134504
    Zhao, M., Lin, H.-B., Yuan, Y.-Y., Wang, F.-Y., Xi, Y., Wen, L.-M., et al. (2016). Prevalence of pre-diabetes and its associated risk factors in rural areas of Ningbo, China. International Journal of Environmental Research and Public Health, 13(8), Article 808. https://doi.org/10.3390/ijerph13080808
    衛生福利部國民健康署. (2022). 國民營養健康狀況變遷調查成果報告(106-109年). https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=3999&pid=15562

    QR CODE