簡易檢索 / 詳目顯示

研究生: 蔡佳伶
Tsai, Chia-Ling
論文名稱: 人參皂苷Rh2對於胰島素抗阻的研究
Effect of Ginsenoside Rh2 on Insulin Resistance
指導教授: 鄭瑞棠
Cheng, Juei-Tang
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 96
中文關鍵詞: 人參皂苷胰島素抗阻
外文關鍵詞: Rh2, GLUT4, Poly(ADP-ribose) polymerase, PARP, 20(S)-protopanaxadiol, glucose uptake, ginsenoside, PPD, insulin resistance, IR, intraperitoneal glucose tolerance test, IPGTT, GR, glucocorticoid receptor, Dexamethasone, homeostasis model assessment insulin resistance, glucose transporter type 4
相關次數: 點閱:112下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   胰島素抗阻( insulin resistance )是第二型糖尿病的常見病徵且在出現糖尿病前就會發生。其形成的原因主要為周邊組織或器官喪失了對胰島素刺激的反應能力。Glucose transporter ( GLUT4 )對於胰島素刺激之下肌肉的葡萄糖攝取扮演著相當重要的角色,其功能好壞也與胰島素抗阻的關係密不可分。人參( Panax Ginseng C.A. Meyer )有廣泛的藥理作用,具有免疫、抗癌、代謝及神經方面及抗壓的優點;其有效成份為人參皂苷( ginsenosides ),例如Rh2。人參皂苷Rh2主要在韓國紅參根部被發現(以蒸氣萃取人參根),文獻報導它可以改變癌細胞增生及干擾正常細胞的細胞週期。本實驗室之前研究已發現,Rh2在第一型糖尿病老鼠具有降血糖的效果。於是,本研究的目的是想探討Rh2是否也能改善胰島素抗阻,並了解其作用機轉。首先,使用C2C12細胞( myoblast cells ),進行葡萄糖攝取的實驗,觀察到Rh2能促進葡萄糖的攝取;這個作用在葡萄糖皮質類固醇受體( glucocorticoid receptor,GR )的阻斷劑RU486存在下會消失。另外,投予RNA合成的抑制劑actinomycin D ( Act D ) 及poly ( ADP- ribose ) polymerase ( PARP )的抑制劑,3-aminobenzamide ( 3-AB )或1,5-isoquinolinediol ( 1,5-ISO ),也會抑制Rh2所促進的葡萄糖攝取。使用西方墨點法,同樣變化也在C2C12細胞獲得證實:Rh2能有效增加GLUT4蛋白的表現,而處理RU486、Act D、 3-AB、1,5-ISO時,則GLUT4蛋白的表現會被抑制。另外,Rh2與胰島素同時處理細胞,可得到增強胰島素所促進葡萄糖的攝取。而且,以luciferase reporter assays,也看到Rh2能啟動glucocorticoid response element ( GRE )。由以上的結果顯示,Rh2會經由葡萄糖皮質類固醇受體的啟動來造成GLUT4表現,並促進葡萄糖的攝取。在活體實驗,使用遺傳性第二型糖尿病老鼠( Zucker rats ),以尾靜脈注射方式給予Rh2 ( 1 mg/kg ),每天三次,十九天後顯示,Rh2組Zucker rats有較低的HOMA IR指數、較好的葡萄糖耐受性,較佳的胰島素敏感性及葡萄糖-胰島素指數。然而,當RU486存在時,並不會抑制Rh2的這項作用。在肥胖Zucker rats離體骨骼肌, Rh2確實可增加胰島素的細胞內訊息傳遞:增加胰島素受體酪胺酸激酶( insulin receptor tyrosine kinase )及胰島素受體受質( insulin receptor substrate, IRS-1 )的磷酸化,活化phosphatidylinositol 3-kinase ( PI 3-Kinase )及Akt,並促進GLUT4蛋白的表現。可是,在Zucker rats肝臟,卻看不到Rh2降低PEPCK蛋白的表現。此外,檢測動物血液,看到Rh2在體內可轉換成其活性代謝物protopana- xadiol ( PPD )。以luciferase reporter assays,也看不到PPD能啟動GRE。可是,以PPD注射至動物體內,看到PPD也能降低Zucker rats的HOMA IR指數、增加葡萄糖耐受性、胰島素敏感度及有較佳的葡萄糖-胰島素指數。因此,由動物的實驗可知,Rh2在體內會經由轉換成活性代謝物( PPD )來達到改善胰島素抗阻。綜合這些結果,本研究證實Rh2可作為改善第二型糖尿病胰島素抗阻的參考物質。

     Insulin resistance ( IR ) is widely observed in patients with type 2 diabetes, even development before the induction of disease. IR is caused by the lower ability of peripheral target tissues to respond the circulating insulin. As one of the potential rate-controlling steps regulating insulin-stimulated glucose metabolism, glucose transporter ( GLUT4 ) has been implicated as the major parameters responsible for causing insulin resistance. Ginseng, Panax ginseng C.A. Meyer, has wide pharmacological actions, showing immunological, anti-cancer, metabolic, neurological benefits and anti-oxidant properties. Its primary active integrants are ginsenosides, such as Rh2. Ginsenoside Rh2 is contained in Korean red ginseng root ( steamed root of ginseng ) with ability to alter cancer cell proliferation and perturb normal cell cycle events. In our pervious studies, Rh2 was found to decrease the plasma glucose in STZ-diabetic rats. The aim of this study is to investigate the effect of Rh2 on insulin resistance. On C2C12 cells, glucose uptake was increased by Rh2 and this increase was reversed by glucocorticoid receptor ( GR ) anta- gonist, RU486 and RNA synthesis inhibitor, actinomycin D ( Act D ) and poly ( ADP-ribose ) polymerase ( PARP ) inhibitor, 3-aminobenzamide ( 3-AB ) and 1,5-isoquinolinediol ( 1,5-ISO ). GLUT4 proteins were also increased on C2C12 cells by Rh2, and this increase was inhibited by RU486, Act D, 3-AB and 1,5-ISO. Otherwise, combination of Rh2 with insulin-treated C2C12 cells produced better glucose uptake than insulin-treated only. In luciferase reporter assays, pGL2-GRE ( glucocorticoid response element ) promoter activity was increased by Rh2. Thus, Rh2 can increase GLUT4 expression and glucose uptake through GR via PARP-related pathway. Then, Zucker rats, the genetic type 2 diabetic rats, were treated with Rh2 ( 1 mg/kg., intravenously, tid, for 19 days ). Rh2-treated Zucker rats showed a lower HOMA IR index, and a better glucose tolerance, insulin sensitivity and glucose-insulin index than the control. This improvement was not reversed by RU486 ( 10 mg/kg, intraperitoneally, bid, for 19 days ). In the insulin signaling pathway of skeletal muscles, Rh2 treated-Zucker rats showed an increasing expression of tyrosine phosphorylation of insulin receptor and insulin receptor substrate ( IRS-1 ) and activation of phosphatidylinositol 3-kinase ( PI 3-Kinase ) and Akt and GLUT4 proteins. However, hepatic expression of Zucker rats was not influenced by Rh2. Moreover, Rh2 is changed to protopanaxadiol ( PPD ) in Zucker rats using assays of HPLC. In luciferase reporter assays, pGL2-GRE promoter activity was not raised by PPD. However, PPD-treated Zucker rats also showed lower HOMA IR index and better glucose tolerance or glucose-insulin index than the control. The obtained results indicate that Rh2 can improve the insulin resistance in type-2 like diabetic rats through the active metabolites of Rh2. Thus, Rh2 could be useful for insulin resistance in type 2 diabetes.

    縮寫表 2 第一章 緒論 5 第二章 實驗材料與方法 11 第三章 結果 29 第四章 討論 40 第五章 結論 45 參考文獻 47 附圖 57 自述 96

    [1] Buchanan TA. Pancreatic beta-cell loss and preservation in type 2 diabetes. Clinical Therapeutics 25 Suppl B: B32-46, 2003
    [2] Katzung BG. Pancreatic hormones and antidiabetic drugs. Basic & clinical pharmacology 8th ed. pp693-715 New York: Lange Medical Books/McGraw-Hill, c2001
    [3] Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414: 821-7, 2001
    [4] Goldstein BJ. Insulin resistance as the core defect in type 2 diabetes mellitus. American Journal of Cardiology 90: 3G-10G, 2002
    [5] Petersen KF. Shulman GI. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. American Journal of Cardiology 90 :11G-18G, 2002
    [6] Wang BX. Zhou QL. Yang M. Wang Y. Cui ZY. Liu YQ. Ikejima T. Hypoglycemic mechanism of ginseng glycopeptide. Acta Pharmacologica Sinica 24: 61-6, 2003
    [7] Molokovskii DS. Davydov VV. Tiulenev VV. The action of adaptogenic plant preparations in experimental alloxan diabetes. Problemy Endokrinologii (Moscow) 35: 82-7, 1989
    [8] Xie JT. Mehendale SR. Wang A. Han AH. Wu JA. Osinski J. Yuan CS. American ginseng leaf: ginsenoside analysis and hypoglycemic activity. Pharmacological Research 49: 113-7, 2004
    [9] Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochemical Pharmacology 54: 1-8, 1997
    [10] Ackerknecht EH. A short history of medicine. Altimore: Johns Hopkins University Press 1982
    [11] Bensky D. Gamble A. Chinese herbal medicine materia medica. Seattle, WA: Eastland Press 1993
    [12] Sotaniemi EA. Haapakoski E. Rautio A. Ginseng therapy in noninsulin-dependent diabetic patients. Diabetes Care 18: 1373-5, 1995
    [13] Vuksan V. Sievenpiper JL. Koo VY. Francis T. Beljan-Zdravkovic U. Xu Z. Vidgen E. American Ginseng (Panax quinquefolius L.) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Archives of Internal Medicine 160: 1009-13, 2000
    [14] Vuksan V. Sievenpiper JL. Xu Z. Wong EY. Jenkins AL. Beljan- Zdravkovic U. Leiter LA. Josse RG. Stavro MP. Konjac- mannan and American ginseng: emerging alternative therapies for type 2 diabetes mellitus. Journal of the American College of Nutrition 20: 370S-80S, 2001
    [15] Chung SH. Choi CG. Park SH. Comparisons between white ginseng radix and rootlet for antidiabetic activity and mechanism in KKAY mice. Archives of Pharmacal Research 24: 214-8, 2001
    [16] Kim YS. Kim DS. Kim SI. Ginsenoside Rh2 and Rh3 induce differentiation of HL-60 cells into granulocytes: modulation of protein kinase C isoforms during differentiation by ginsenoside Rh2. International Journal of Biochemistry & Cell Biology 30: 327-38, 1998
    [17] Byun BH. Shin I. Yoon YS. Kim SI. Joe CO. Modulation of protein kinase C activity in NIH 3T3 cells by plant glycosides from Panax ginseng. Planta Medica 63: 389-92, 1997
    [18] Odashima S. Ohta T. Kohno H. Matsuda T. Kitagawa I. Abe H. Arichi S. Control of phenotypic expression of cultured B16 melanoma cells by plant glycosides. Cancer Research 45: 2781-4, 1985
    [19] Liu WK. Xu SX. Che CT. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sciences 67: 1297-306, 2000
    [20] Lee KY. Park JA. Chung E. Lee YH. Kim SI. Lee SK. Ginsenoside-Rh2 blocks the cell cycle of SK-HEP-1 cells at the G1/S boundary by selectively inducing the protein expression of p27kip1. Cancer Letters 110: 193-200, 1996
    [21] Popovich DG. Kitts DD. Structure-function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1) cell line. Archives of Biochemistry & Biophysics 406: 1-8, 2002
    [22] Fei XF. Wang BX. Tashiro S. Li TJ. Ma JS. Ikejima T. Apoptotic effects of ginsenoside Rh2 on human malignant melanoma A375-S2 cells. Acta Pharmacologica Sinica 23: 315-22, 2002
    [23] Park JA. Lee KY. Oh YJ. Kim KW. Lee SK. Activation of caspase-3 protease via a Bcl-2-insensitive pathway during the process of ginsenoside Rh2-induced apoptosis. Cancer Letters 121: 73-81, 1997
    [24] Park EK. Choo MK. Kim EJ. Han MJ. Kim DH. Antiallergic Activity of Ginsenoside Rh2. Biological & Pharmaceutical Bulletin 26: 1581-4, 2003
    [25] Jeanrenaud B. Neuroendocrine and metabolic basis of type II diabetes as studied in animal models. Diabetes-Metabolism Reviews 4: 603-14, 1988
    [26] Shimaya A. Noshiro O. Hirayama R. Yoneta T. Niigata K. Shikama H. Insulin sensitizer YM268 ameliorates insulin resistance by normalizing the decreased content of GLUT4 in adipose tissue of obese Zucker rats. European Journal of Endocrinology 137: 693-700, 1997
    [27] Gassler N. Elger M. Kranzlin B. Kriz W. Gretz N. Hahnel B. Hosser H. Hartmann I. Podocyte injury underlies the progression of focal segmental glomerulosclerosis in the fa/fa Zucker rat. Kidney International. 60: 106-16, 2001
    [28] http://anatomy.med.unsw.edu.au/cbl/research/methods/culture.htm
    [29] Spraul M. Anderson EA. Bogardus C. and Ravussin E. Muscle sympathetic nerve activity in response to glucose ingestion. Impact of plasma insulin and body fat. Diabetes 43: 191-6, 1994
    [30] Emoto M. Nishizawa Y. Maekawa K. Hiura Y. Kanda H. Kawagishi T. Shoji T. Okuno Y. Morii H. Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas. Diabetes Care 22: 818-22, 1999
    [31] Brown M. Bing C. King P. Pickavance L. Heal D. Wilding J. Sibutramine reduces feeding, body fat and improves insulin resistance in dietary-obese male Wistar rats independently of hypothalamic neuropeptide Y. British Journal of Pharmacology 132: 1898-904, 2001
    [32] Brown RE. Jarvis KL. Hyland KJ. Protein measurement using bicinchoninic acid: elimination of interfering substances. Analytical Biochemistry 180: 136-9, 1989
    [33] Fry JR. Jones CA. Wiebkin P. Bellemann P. Bridges JW. The enzymic isolation of adult rat hepatocytes in a functional and viable state. Analytical Biochemistry 71: 341-50, 1976
    [34] Tortorella LL. Pilch PF. C2C12 myocytes lack an insulin- responsive vesicular compartment despite dexamethasone-induced GLUT4 expression. American Journal of Physiology - Endocrinology & Metabolism 283: E514-24, 2002
    [35] Sugaya A. Sugiyama T. Yanase S. Shen XX. Minsoura H. and Toyoda N. Expression of glucose transporter 4 mRNA in adipose tissue and skeletal muscle of ovariectomized rats treated with sex steroid hormone. Life Sciences 66: 641-8, 1999
    [36] Yamada K. Yamakawa K. and Terada Y. Expression of GLUT4 glucose transporter protein in adipose and skeletal muscle from streptozotocin-induced diabetic pregnant rats. Hormone and Metabolic Research 31: 508-13, 1999
    [37] Lee YN. Lee HY. Chung HY. Kim SI. Lee SK. Park BC. Kim KW. In vitro induction of differentiation by ginsenoides in F9 teratocarcinoma cells. European Journal of Cancer 32A: 1420-8, 1996
    [38] Lee YN. Lee HY. Lee YM. Chung HY. Kim SI. Lee SK. Park BC. Kim KW. Involvement of glucocorticoid receptor in the induction of differentiation by ginsenosides in F9 teratocarcinoma cells. Journal of Steroid Biochemistry & Molecular Biology 67: 105-11, 1998
    [39] Krook A. Wallberg-Henriksson H. Zierath JR. Sending the signal: molecular mechanisms regulating glucose uptake. Medicine & Science in Sports & Exercise 36: 1212-7, 2004
    [40] Lee YJ. Chung E. Lee KY. Lee YH. Huh B. Lee SK. Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Molecular & Cellular Endocrinology 133: 135-40, 1997
    [41] Hernandez R. Teruel T. Lorenzo M. Insulin and dexamethasone induce GLUT4 gene expression in foetal brown adipocytes: synergistic effect through CCAAT/enhancer-binding protein alpha. Biochemical Journal 372: 617-24, 2003
    [42] Cleasby ME. Kelly PA. Walker BR. Seckl JR. Programming of rat muscle and fat metabolism by in utero overexposure to glucocorticoids. Endocrinology 144: 999-1007, 2003
    [43] Weber K. Bruck P. Mikes Z. Kupper JH. Klingenspor M. Wiesner RJ. Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle. Endocrinology 143: 177-84, 2002
    [44] Linda Roy. High Transfection Efficiency of Cloned Cell Lines. Focus 21: 62
    [45] Virag L. Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacological Reviews 54: 375-429, 2002
    [46] Miyamoto T. Kakizawa T. Hashizume K. Inhibition of nuclear receptor signalling by poly(ADP-ribose) polymerase. Molecular & Cellular Biology 19: 2644-9, 1999
    [47] Obrosova IG. Minchenko AG. Frank RN. Seigel GM. Zsengeller Z. Pacher P. Stevens MJ. Szabo C. Poly(ADP-ribose) polymerase inhibitors counteract diabetes- and hypoxia-induced retinal vascular endothelial growth factor overexpression. International Journal of Molecular Medicine 14: 55-64, 2004
    [48] Cusi K. Maezono K. Osman A. Pendergrass M. Patti ME. Pratipanawatr T. DeFronzo RA. Kahn CR. Mandarino LJ. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. Journal of Clinical Investigation 105: 311-20, 2000
    [49] Goodyear LJ. Giorgino F. Sherman LA. Carey J. Smith RJ. Dohm GL. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. Journal of Clinical Investigation 95: 2195-204, 1995
    [50] Klein HH. Vestergaard H. Kotzke G. Pedersen O. Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM. Diabetes 44: 1310-7, 1995
    [51] Krook A. Bjornholm M. Galuska D. Jiang XJ. Fahlman R. Myers MG Jr. Wallberg-Henriksson H. Zierath JR. Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes 49: 284-92, 2000
    [52] Bjornholm M. Kawano Y. Lehtihet M. Zierath JR. Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 46: 524-7, 1997
    [53] Kim YB. Nikoulina SE. Ciaraldi TP. Henry RR. Kahn BB. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. Journal of Clinical Investigation 104: 733-41, 1999
    [54] Brozinick JT Jr. Roberts BR. Dohm GL. Defective signaling through Akt-2 and -3 but not Akt-1 in insulin-resistant human skeletal muscle: potential role in insulin resistance. Diabetes 52: 935-41, 2003
    [55] Koistinen HA. Galuska D. Chibalin AV. Yang J. Zierath JR. Holman GD. Wallberg-Henriksson H. 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes 52: 1066-72, 2003
    [56] Ryder JW. Yang J. Galuska D. Rincon J. Bjornholm M. Krook A. Lund S. Pedersen O. Wallberg-Henriksson H. Zierath JR. Holman GD. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes 49: 647-54, 2000
    [57] Zierath JR. He L. Guma A. Odegoard Wahlstrom E. Klip A. Wallberg-Henriksson H. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 39: 1180-9, 1996
    [58] Tan MH. Current treatment of insulin resistance in type 2 diabetes mellitus. International Journal of Clinical Practice Supplement: 54-62, 2000
    [59] Kamon J. Yamauchi T. Terauchi Y. Kubota N. Kadowaki T. The mechanisms by which PPARgamma and adiponectin regulate glucose and lipid metabolism. Nippon Yakurigaku Zasshi - Folia Pharmacologica Japonica 122: 294-300, 2003
    [60] Ota T. Maeda M. Odashima S. Mechanism of action of ginsenoside Rh2: uptake and metabolism of ginsenoside Rh2 by cultured B16 melanoma cells. Journal of Pharmaceutical Sciences 80: 1141-6, 1991
    [61] Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. Journal of Pharmaceutical Sciences 95: 153-7, 2004
    [62] Xie HT. Wang GJ. Chen M. Jiang XL. Li H. Lv H. Huang CR. Wang R. Roberts M. Uptake and metabolism of ginsenoside Rh2 and its aglycon protopanaxadiol by Caco-2 cells. Biological & Pharmaceutical Bulletin 28: 383-6, 2005

    下載圖示 校內:2006-08-31公開
    校外:2006-08-31公開
    QR CODE