| 研究生: |
劉易誠 Liu, Yi-Cheng |
|---|---|
| 論文名稱: |
以第一原理計算探討 MgZrHfTiN 塗層機械性質及其與 ZK60 鎂合金接面特性 First-Principles Study of the Interface and Mechanical Properties of MgZrHfTiN High-Entropy Nitride Film on ZK60 Magnesium Alloy |
| 指導教授: |
許文東
Hsu, Wen-dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 高熵氮化物 、機械性質 、骨釘塗層 、第一原理計算 、生物可降解材料 |
| 外文關鍵詞: | High-entropy nitride, ZK60 magnesium alloy, DFT, biocompatible coatings, mechanical properties, interfacial model |
| 相關次數: | 點閱:16 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著醫療技術的持續進步,醫療材料亦不斷推陳出新。為減少二次手術對患者所造成的負擔,臨床上對骨釘材料提出具備生物可降解特性的需求。鎂合金因具有與人體骨骼相似的力學性質與密度,能有效避免傳統金屬植入物常見的屏蔽效應,因而被視為理想的生物可降解骨釘材料。然而,鎂合金在體內的降解速率過快,可能導致植入物於組織修復完成前失去支撐效果,限制其臨床應用。因此,本研究主要探討於鎂合金表面設計高熵氮化物塗層,期望在降低降解速率的同時,提升其生物相容性並增強機械性質。
本研究以密度泛函理論(Density Functional Theory, DFT)之 Vienna Ab-initio Simulation Package(VASP)第一原理計算為基礎,從材料篩選出發,結合X射線繞射分析(X-ray Diffraction, XRD)與 X 射線光電子能譜分析(X-ray Photoelectron Spectroscopy, XPS)結果,選擇適合做為鎂合金塗層的固溶高熵氮化物。進一步透過理論計算探討不同元素組成對其機械性質的影響,篩選出兼具良好生物相容性與優異耐磨耗機械特性的塗層材料。
To address the limitations of conventional metallic bone screws, particularly the need for secondary surgeries, biodegradable magnesium alloys have emerged as a promising alternative due to their favorable mechanical compatibility with human bone and excellent biocompatibility. However, the high corrosion rate of magnesium in physiological environments restricts its clinical applications. This study proposes the application of high-entropy nitride (HEN) coatings to ZK60 magnesium alloy to improve corrosion resistance and mechanical durability.
By employing first-principles calculations based on density functional theory (DFT) using the VASP package, we investigated the bulk mechanical behavior of MgZrHfTiN systems. Candidate nitride coatings were initially screened through experimental XRD and XPS analysis to ensure single-phase solid solution formation. Subsequently, compositional variations and nitrogen-defect effects were examined to evaluate their influence on hardness and elasticity.
Furthermore, we designed and analyzed interfacial models between the ZK60 substrate and rock-salt-structured HENs, focusing on lattice matching, strain compatibility, and interface energies. The results demonstrate that selected high-entropy nitrides not only enhance mechanical properties but also offer potential as wear-resistant, biocompatible coatings suitable for medical applications in biodegradable implants.
[1] S. Nag and R. Banerjee, “Fundamentals of Medical Implant Materials,” p. 12.
[2] M. Aminzare et al., “Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties,” Ceramics International, vol. 39, no. 3, pp. 2197–2206, Apr. 2013, doi: 10.1016/j.ceramint.2012.09.023.
[3] J. Li et al., “Materials evolution of bone plates for internal fixation of bone fractures: A review,” Journal of Materials Science & Technology, vol. 36, pp. 190–208, Jan. 2020, doi: 10.1016/j.jmst.2019.07.024.
[4] S. M. Perren, “EVOLUTION OF THE INTERNAL FIXATION OF LONG BONE FRACTURES,” THE JOURNAL OF BONE AND JOINT SURGERY, vol. 84, no. 8, p. 18, 2002.
[5] Y. Yu, H. Lu, and J. Sun, “Long-term in vivo evolution of high-purity Mg screw degradation — Local and systemic effects of Mg degradation products,” Acta Biomaterialia, vol. 71, pp. 215–224, Apr. 2018, doi: 10.1016/j.actbio.2018.02.023.
[6] F. Witte, "The history of biodegradable magnesium implants: A review," Acta Biomaterialia, vol. 6, no. 5, pp. 1680-1692, 2010/05/01/ 2010.
[7] G. Wu, J. M. Ibrahim, and P. K. Chu, “Surface design of biodegradable magnesium alloys — A review,” Surface and Coatings Technology, vol. 233, pp. 2–12, Oct. 2013, doi: 10.1016/j.surfcoat.2012.10.009.
[8] T. T. S. T.K. Chen and M. S. W. J.W. Yeh, “Nanostructured nitride films of multielement high-entropy alloys by reactive DC sputtering,” Surface & Coatings Technology, vol. 188 – 189, pp. 193–200, 2004.
[9] O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw, “Refractory high-entropy alloys,” Intermetallics, vol. 18, no. 9, pp. 1758–1765, Sep. 2010, doi: 10.1016/j.intermet.2010.05.014.
[10] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, “Solid-Solution Phase Formation Rules for Multi-component Alloys,” Advanced Engineering Materials, vol. 10, no. 6, pp. 534–538, 2008, doi: 10.1002/adem.200700240.
[11] M. C. Troparevsky, J. R. Morris, P. R. C. Kent, A. R. Lupini, and G. M. Stocks, “Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys,” Phys. Rev. X, vol. 5, no. 1, p. 011041, Mar. 2015, doi: 10.1103/PhysRevX.5.011041.
[12] M.-H. Tsai and J.-W. Yeh, “High-Entropy Alloys: A Critical Review,” Materials Research Letters, vol. 2, no. 3, pp. 107–123, Jul. 2014, doi: 10.1080/21663831.2014.912690.
[13] J. Gild et al., “High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics,” Sci Rep, vol. 6, no. 1, p. 37946, Nov. 2016, doi: 10.1038/srep37946.
[14] S. Akrami, P. Edalati, M. Fuji, and K. Edalati, “High-entropy ceramics: Review of principles, production and applications,” Materials Science and Engineering: R: Reports, vol. 146, p. 100644, Oct. 2021, doi: 10.1016/j.mser.2021.100644
[15] X. Wu et al., “Nitriding high entropy alloy films: Opportunities and challenges,” Surface and Coatings Technology, vol. 476, p. 130157, Jan. 2024, doi: 10.1016/j.surfcoat.2023.130157
[16] V. Novikov, N. Stepanov, S. Zherebtsov, and G. Salishchev, “Structure and Properties of High-Entropy Nitride Coatings,” Metals, vol. 12, no. 5, p. 847, May 2022, doi: 10.3390/met12050847
[17] A. Rashidy Ahmady, A. Ekhlasi, A. Nouri, M. Haghbin Nazarpak, P. Gong, and A. Solouk, “High entropy alloy coatings for biomedical applications: A review,” Smart Materials in Manufacturing, vol. 1, p. 100009, 2023, doi: 10.1016/j.smmf.2022.100009
[18] F. Tian, L. K. Varga, N. Chen, J. Shen, and L. Vitos, “Empirical design of single phase high-entropy alloys with high hardness,” Intermetallics, vol. 58, pp. 1–6, Mar. 2015, doi: 10.1016/j.intermet.2014.10.010
[19] N. Tüten, D. Canadinc, A. Motallebzadeh, and B. Bal, “Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti 6Al 4V substrates,” Intermetallics, vol. 105, pp. 99–106, Feb. 2019, doi: 10.1016/j.intermet.2018.11.015
[20] A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wen, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomaterialia, vol. 8, no. 5, pp. 1661–1669, May 2012, doi: 10.1016/j.actbio.2012.01.018.
[21] Y. F. Zheng, X. N. Gu, and F. Witte, “Biodegradable metals,” Materials Science and Engineering: R: Reports, vol. 77, pp. 1–34, Mar. 2014, doi: 10.1016/j.mser.2014.01.001.
[22] I.-S. Lee, C.-N. Whang, J.-C. Park, D.-H. Lee, and W.-S. Seo, “Biocompatibility and charge injection property of iridium film formed by ion beam assisted deposition,” Biomaterials, vol. 24, no. 13, pp. 2225–2231, Jun. 2003, doi: 10.1016/S0142-9612(03)00025-5.
[23] L. Saldana et al., “In vitro biocompatibility of an ultrafine grained zirconium,” Biomaterials, vol. 28, no. 30, pp. 4343–4354, Oct. 2007, doi: 10.1016/j.biomaterials.2007.06.015
[24] X. Wu et al., “Opportunities and challenges of the nitride coatings for artificial implants: A review,” Surface and Coatings Technology, vol. 480, p. 130587, Mar. 2024, doi: 10.1016/j.surfcoat.2024.130587.
[25] H. Hornberger, S. Virtanen, and A. R. Boccaccini, “Biomedical coatings on magnesium alloys – A review,” Acta Biomaterialia, vol. 8, no. 7, pp. 2442–2455, Jul. 2012, doi: 10.1016/j.actbio.2012.04.012.
[26] W. Zhang et al., “Maglev-fabricated long and biodegradable stent for interventional treatment of peripheral vessels,” Nat Commun, vol. 15, no. 1, p. 7903, Sep. 2024, doi: 10.1038/s41467-024-52288-4.
[27] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, no. 1, pp. 15–50, Jul. 1996, doi: 10.1016/0927-0256(96)00008-0.
[28] E. Fermi, "Un metodo statistico per la determinazione di alcune priorieta dell’atome," Rend. Accad. Naz. Lincei, vol. 6, no. 602-607, p. 32, 1927.
[29] L. H. Thomas, "The calculation of atomic fields," in Mathematical Proceedings of the Cambridge Philosophical Society, 1927, vol. 23, no. 5: Cambridge University Press, pp. 542-548.
[30] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136, no. 3B, pp. B864–B871, Nov. 1964, doi: 10.1103/PhysRev.136.B864.
[31] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., vol. 140, no. 4A, pp. A1133–A1138, Nov. 1965, doi: 10.1103/PhysRev.140.A1133.
[32] Dudarev, S.L., et al., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Physical Review B, 1998. 57(3): p. 1505
[33] Lee, I.-H. and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids. Physical Review B, 1997. 56(12): p. 7197.
[34] P. E. Blöchl, "Projector augmented-wave method," Physical review B, vol. 50, no. 24, p. 17953, 1994.
[35] G. Makov and M. C. Payne, “Periodic boundary conditions in ab initio calculations,” Phys. Rev. B, vol. 51, no. 7, pp. 4014–4022, Feb. 1995, doi: 10.1103/PhysRevB.51.4014.
[36] R. Hetnarski and J. Ignaczak, “Mathematical Theory of Elasticity,” Journal of Thermal Stresses, vol. 29, pp. 505–506, May 2006, doi: 10.1080/01495730500495751.
[37] Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, “Crystal structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles,” Phys. Rev. B, vol. 76, no. 5, p. 054115, Aug. 2007, doi: 10.1103/PhysRevB.76.054115.
[38] O. H. Nielsen and R. M. Martin, “First-Principles Calculation of Stress,” Phys. Rev. Lett., vol. 50, no. 9, pp. 697–700, Feb. 1983, doi: 10.1103/PhysRevLett.50.697.
[39] R. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proc. Phys. Soc. A, vol. 65, no. 5, pp. 349–354, May 1952, doi: 10.1088/0370-1298/65/5/307.
[40] 張昱凡/Zhang Y.-F., “第一原理探討多主元素碳化物與碳氮化物之組成與機械性質/Study of composition and mechanical property of multi-principal element carbides and carbonitrides by first-principles calculation,” p. 119.
[41] X.-Q. Chen, H. Niu, D. Li, and Y. Li, “Modeling hardness of polycrystalline materials and bulk metallic glasses,” Intermetallics, vol. 19, no. 9, pp. 1275–1281, Sep. 2011, doi: 10.1016/j.intermet.2011.03.026.
[42] D.-C. Tsai, Z.-C. Chang, B.-H. Kuo, Y.-C. Liu, E.-C. Chen, and F.-S. Shieu, “Structural, electro-optical, and mechanical properties of reactively sputtered (TiZrHf)N coatings,” Ceramics International, vol. 42, no. 12, pp. 14257–14265, Sep. 2016, doi: 10.1016/j.ceramint.2016.06.055.
[43] Chen, X.-Q., et al., Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 2011. 19(9): p. 1275-1281.
[44] Musil, J., et al., Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings. Surface and Coatings Technology, 2002. 154(2-3): p. 304-313.
[45] Leyland, A. and A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000. 246(1-2): p. 1-11.
[46] Musil, J., et al., Tribological and mechanical properties of nanocrystalline-TiC/a-C nanocomposite thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2010. 28(2): p. 244-249.
[47] E.-T. Dong, P. Shen, L.-X. Shi, D. Zhang, and Q.-C. Jiang, “Wetting and adhesion at Mg/MgO interfaces,” J Mater Sci, vol. 48, no. 17, pp. 6008–6017, Sep. 2013, doi: 10.1007/s10853-013-7397-3.
[48] G. Shen, S. Lyu, Y. Zhao, C. You, X. Wang, and M. Chen, “The first principle research of CaO and MgO particulate heterogeneous nucleation in Mg alloys,” Applied Surface Science, vol. 593, p. 153224, Aug. 2022, doi: 10.1016/j.apsusc.2022.153224.
[49] W. Xu, A. P. Horsfield, D. Wearing, and P. D. Lee, “First-principles calculation of Mg/MgO interfacial free energies,” Journal of Alloys and Compounds, vol. 650, pp. 228–238, Nov. 2015, doi: 10.1016/j.jallcom.2015.07.289.
[50] H.-Q. Song, M. Zhao, and J.-G. Li, “First-principles study of Mg(0001)/MgO(1-11) interfaces,” Mod. Phys. Lett. B, vol. 30, no. 16, p. 1650152, Jun. 2016, doi: 10.1142/S0217984916501529.
[51] E.-T. Dong, P. Shen, L.-X. Shi, D. Zhang, and Q.-C. Jiang, “Wetting and adhesion at Mg/MgO interfaces,” J Mater Sci, vol. 48, no. 17, pp. 6008–6017, Sep. 2013, doi: 10.1007/s10853-013-7397-3.
[52] T. Yang, X. Chen, W. Li, X. Han, and P. Liu, “First-principles calculations to investigate the interfacial energy and electronic properties of Mg/AlN interface,” Journal of Physics and Chemistry of Solids, vol. 167, p. 110705, Aug. 2022, doi: 10.1016/j.jpcs.2022.110705.
[53] H. Lin, J.-X. Liu, H. Fan, and W.-X. Li, “Compensation between Surface Energy and hcp/fcc Phase Energy of Late Transition Metals from First-Principles Calculations,” J. Phys. Chem. C, vol. 124, no. 20, pp. 11005–11014, May 2020, doi: 10.1021/acs.jpcc.0c02142.
[54] Y. Song et al., “Effect of solutes on texture evolution during grain growth in ZK60 alloy by phase field simulation,” Transactions of Nonferrous Metals Society of China, vol. 34, no. 4, pp. 1110–1122, Apr. 2024, doi: 10.1016/S1003-6326(23)66457-X.
[55] 許廷宇/Hsu T.-Y., “高熵薄膜的表面特性及生物相容性研究/ Research on the surface properties and biocompatibility of high-entropy films.”