| 研究生: |
江孟桓 Chiang, Meng-Huan |
|---|---|
| 論文名稱: |
透過NAS layer進行機器類型通訊之小資料傳輸 Small Data Transmission via Non-Access Stratum Layer for Machine Type Communication Device |
| 指導教授: |
蘇淑茵
Sou, Sok-Ian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 機器類型通訊 、小資料傳輸 、存取延遲 、非存取層 |
| 外文關鍵詞: | MTC, small data transmission, access delay, NAS |
| 相關次數: | 點閱:121 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前被廣泛運用的機器類型通訊(MTC)裝置會定期和其他裝置進行少量資料的傳輸。然而目前3GPP所制定的資料傳輸方式並不適合機器類型通訊裝置進行小資料傳輸。當很多個機器類型通訊裝置要進行小資料傳輸時,這些裝置必須透過隨機存取步驟來建立無線資源控制(RRC)連結,因而導致網路壅塞、增加裝置的功率消耗。在3GPP TR23.887這份規格文件提出非存取層(NAS)方法可以改善小資料傳輸情境所造成的網路壅塞。小資料可以透過非存取層封包做傳送、非存取層封包擁有加密功能可保護資料。所以建立無線承載和安全模式的傳輸步驟是多餘的。但是這份文件卻沒有足夠模擬數據證實此方法是有效率的。
本篇論文主要是設計數學模組來探討非存取層方法是否適用於小資料傳輸。模擬數據顯示當裝置進行小資料傳輸時,在不影響延遲的情況下,非存取層方法能夠延長機器類型通訊裝置的壽命。
Machine Type Communication (MTC) devices which have been applied extensively generate a small amount of data exchanged periodically. However, legacy transmission method used in 3GPP is not suitable for MTC device to perform small data transmission. The reason is these devices will have to perform random access procedures to establish the Radio Resource Control (RRC) connection. This scenario will increase network overhead and power consumption of MTC device. Non-Access Stratum (NAS) method proposed from 3GPP TR23.887 document can improve network overhead. Small data can be added into NAS packet and NAS packet supports the encrypted function for protecting data. Hence, the transmission procedures which included the establishment of the radio bearers and security mode are redundant. Nevertheless, this document does not show sufficient simulation statistics which prove this method is efficient.
The objective of this thesis is to devise an analytical model used to explore if NAS method can be applied to small data transmission. Numerical result shows that NAS method can extend the lifetime of device without causing the increment of access delay when infrequently small data being produced.
[1] S.-Y. Tsai, S.-I. Sou, and M.-H. Tsai, “Effect of Data Aggregation in M2M Networks,” WPMC, pp.95-99, Sept. 2012.
[2] R. R. Tyagi, K.-D. Lee, F. Aurzada, S. Kim, and M. Reisslein, “Efficient Delivery of Frequent Small Data for U-healthcare Applications Over LTE-Advanced Networks,” MobiHoc, pp. 27-32, June. 2012.
[3] S.-T. Sheu, C.-H. Chiu, S. Lu, and H.-H. Lai, “Efficient Data Transmission Scheme for MTC Communications in LTE System,” The 11th International Conference on ITS Telecommunications, pp.727-731, Aug. 2011.
[4] J. Puttonen, E. Virtej, I. Keskitalo, and E. Malkamäki, “On LTE Performance Trade-off between Connected and Idle States with Always-on Type Applications,” IEEE PIMRC, pp. 981-985, Sept. 2012.
[5] J.-P. Cheng, C.-H. Lee, and T.-M. Lin, “Prioritized Random Access with Dynamic Access Barring for RAN Overload in 3GPP LTE-A Networks,” Globecom Workshops, pp. 368-372, Dec. 2011.
[6] M.-Y. Cheng, G.-Y. Lin, H.-Y. Wei and A. C.-C. Hsu, “Overload Control for Machine-Type-Communications in LTE-Advanced System,” IEEE Communications Magazine, pp.38-45, June. 2012.
[7] S.-I. Sou and S.-M. Wang, “Performance Improvements of Batch Data Model for Machine-to-Machine Communications,” IEEE Communications Letters, pp. 1775-1778, Oct. 2014.
[8] S.-Y. Lien, T.-H. Liau, C.-Y. Kao and K.-C. Chen, “Cooperative Access Class Barring for Machine to Machine Communication,” IEEE Transactions on Wireless Communications, pp. 27-32, Jan. 2012.
[9] K.-D. Lee, M. Reisslein, K. Ryu, and S. Kim, “Handling Randomness of Multi-Class Random Access Loads in LTE-Advanced Network Supporting Small Data Applications,” Globecom Workshops, pp. 436-440, Dec. 2012.
[10] A. Laya, L. Alonso, and J. Alonso-Zarate, “Is the Random Access Channel of LTE and LTE-A Suitable for M2M Communications? A Survey of Alternatives,” IEEE Communications Surveys & Tutorials, pp. 4-16, Feb. 2014.
[11] M. Gerasimenko, V. Petrov, O. Galinina, S. Andreev, and Y. Koucheryavy, “Energy and Delay Analysis of LTE-Advanced RACH Performance under MTC Overload,” Globecom Workshops, pp. 1632-1637, Dec. 2012.
[12] S. Andreev, A. Larmo, and M. Gerasimenko, “Efficient Small Data Access for Machine-Type Communications in LTE,” IEEE ICC, pp. 3569-3574, June. 2013.
[13] M. Hasan and E. Hossain, “Random Access for Machine-to-Machine Communication in LTE-Advanced Networks Issues and Approaches,” IEEE Communications Magazine, pp. 86-93, June. 2013.
[14] K.Zhou, N. Nikaein, R. Knopp and C. Bonnet, “Contention Based Access for Machine-Type Communications over LTE,” Vehicular Technology Conference, pp.1-5, May. 2012.
[15] S.-Y. Lien, K.-C. Chen and Y. Lin, “Toward ubiquitous massive accesses in 3GPP machine-to-machine communications,” IEEE Communications Magazine, pp. 66-74, Apr. 2011.
[16] Ericcson, “Towards 50 billion connected devices,” Nov. 2010.
[17] Third-Generation Patnership Project; Technical Specification Group Services and System Aspects; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2, Technical Specification 3G TS 36.300 Ver.12.5.0 (2015-03).
[18] Third-Generation Patnership Project; Technical Specification Group Core Network and Terminals; Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS), Stage 3, Technical Specification 3G TS 24.301 Ver.13.0.0 (2014-12).
[19] Third-Generation Patnership Project; Technical Specification Group Radio Access Network; 3GPP System Architecture Evolution (SAE); Security architecture, Technical Specification 3G TS 33.401 Ver.12.13.0 (2014-12).
[20] Third-Generation Patnership Project; Technical Specification Group Services and System Aspects; Study on Machine-Type Communication (MTC) and other mobile data applications communications enhancements, Technical Report 3G TR23.887 Ver. 12.0.0 (2013-12).
[21] D. T. Wiriaatmadja and K. W. Choi, “Hybrid Random Access and Data Transmission Protocol for Machine-to-Machine Communications in Cellular Networks,” IEEE Transactions on Wireless Communications, pp. 33-46, Jan. 2015.
[22] T.-M. Lin, C.-H. Lee, and J.-P. Cheng, “PRADA: Prioritized Random Access With Dynamic Access Barring for MTC in 3GPP LTE-A Networks,” IEEE Transactions on Vehicular Technology, pp. 2467-2472, June. 2014
[23] Y.-H. Hsu, K.-C. Wang, and Y.-C. Tsen, “Efficient cooperative access class barring with load balancing and traffic adaptive radio resource management for M2M communications over LTE-A,” Computer Networks, pp. 268-281, Nov. 2014.
[24] W. Zou, Z. Li, and H. Wang, “Small Data Transmission at the Detached Machine-Type-Communication Device,” IEEE PIMRC, pp. 13-17, Sept. 2012.
[25] S.-H. Wang, H.-J. Su, H.-Y. Hsieh, S.-P. Yeh, and M. Ho, “Random Access Design for Clustered Wireless Machine to Machine Networks,” BlackSeaCom, pp. 107-111, July. 2013.
[26] Y. Mehmood, S. N. K. Marwat, C. Gorg, Y. Zaki and A. Timm-Giel, “Evaluation of M2M Data Traffic Aggregation in LTE-A Uplink,” 20 ITG Mobile Communication Conference, pp. 1-6, Aug. 2015.
[27] K. Wang, J. Alonso-Zarate, and M. Dohler, “Energy-Efficiency of LTE for Small Data Machine-to-Machine Communications,” IEEE ICC, pp. 4120 - 4124, June. 2013.
[28] K.-T. Liao, C.-H. Lee, T.-M. Lin, C.-M. Lee, and W.-T. Chen, “Non-orthogonal Direct Access for Small Data Transmission in Cellular MTC Networks,” Proc. IEEE ICC, pp. 1-7, June. 2015.
[29] L. Hui and B. Shuo, “Research and Implementation of LTE NAS security,” ICEIT, pp. 453-456, Sept. 2010.
[30] D. Yu and W. Wen, “Non-Access-Stratum Request Attack in E-UTRAN,” ComComAp, pp. 48-53, Jan. 2012.
[31] S. M.Ross, Introduction to Probability Models, Ten Edition, Academic Press, 2009.